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1 INTRODUÇÃO 

As florestas desempenham um papel crucial na preservação do equilíbrio 

ecológico do planeta. Fatores naturais e humanos podem causar incêndios, e 

estes incêndios representam uma ameaça significativa aos valiosos recursos 

naturais.  

Os incêndios florestais são definidos como toda e qualquer energia 

derivada da combinação entre combustível, comburente e calor, capaz de 

consumir vegetações vivas ou mortas. Esses incêndios, podem iniciar-se de 

forma espontânea ou ser consequência de ações humanas, por conseguinte, é 

iminente a probabilidade de ocorrências de incêndios florestais em todo território 

brasileiro, principalmente na queima de biomassa vegetal. 

 A intensificação da queima de biomassa, comum em diversas culturas 

agrícolas, acarreta graves prejuízos ecológicos, econômicos e paisagísticos. 

Essa prática afeta diretamente os biomas brasileiros, cuja maioria apresenta 

algum grau de vulnerabilidade ao fogo. Entre eles, o bioma Caatinga se destaca 

como uma das áreas mais susceptíveis a grandes incêndios (Jesus et al., 2020). 

Além da destruição em massa de diferentes ecossistemas, das alterações 

climáticas, das perdas ambientais, econômicas e sociais, os incêndios florestais 

também são responsáveis pela emissão de quantidades significativas de gases 

poluentes (Fiedler et al., 2023). A queima de biomassa constitui uma das maiores 

fontes de aerossóis carbonáceos (carbono orgânico; carbono elementar; 

carbono negro) e gases residuais na atmosfera global (Vadrevu et al., 2015; de 

Sa et al . , 2019; Kalita et al., 2020; Heinold et al., 2022), contribuindo com cerca 

de 42% e 74% das emissões de aerossóis carbonáceos e gases residuais, 

respectivamente (Bond et al., 2013; Zhu et al., 2022). Ademais, os aerossóis 

provenientes dos incêndios florestais podem impactar negativamente o clima 

regional através da atenuação da radiação solar e da modificação das 

propriedades atmosféricas (Jiang et al., 2020; Yang et al., 2022; Dumka et al., 

2022; Zhu et al., 2022; Zhu et al., 2022). 

No Brasil, foram determinados indicadores da qualidade do ar, 

representados pelos principais gases poluentes, sendo eles: partículas inaláveis, 

dióxido de enxofre, dióxido de nitrogênio, monóxido de carbono e ozônio 
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(INSTITUTO ESTADUAL DO AMBIENTE; GERÊNCIA DE QUALIDADE DO AR, 

2016).  

 A execução de previsões sobre focos de queimadas e incêndios, é uma 

atividade complexa, que depende de um conjunto de informações de satélites, 

análise de dados históricos, de estudos sobre a vegetação, composição do solo 

e de diversas outras variáveis ambientais. Outrossim, dados precisos sobre as 

variáveis ambientais, podem ser obtidos através do sensoriamento remoto, 

aliado aos sistemas de informações geográficas, às técnicas de inteligência 

artificial e estatística aplicada, favorecendo às tomadas de decisão na previsão. 

Nessa conjuntura, a previsão de focos de incêndios utilizando inteligência 

artificial amplia significativamente a obtenção de dados em locais que 

periodicamente apresentam comprometimento dos biomas e piora da qualidade 

do ar. 

Neste contexto, com a crescente frequência e gravidade dos incêndios 

florestais em todo o mundo, práticas eficazes de gestão de incêndios que 

integrem tecnologias inteligentes são cruciais para mitigar os impactos dos 

incêndios florestais. 

Este trabalho propõe a predição de focos de incêndios em áreas 

susceptíveis a queimadas, através da aplicação da metodologia de Redes 

Neurais Artificiais(RNAs).  
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2 OBJETIVOS

 O presente trabalho tem como objetivo utilizar RNAs para prever focos de 

incêndio, visando auxiliar tanto na identificação de áreas de risco quanto na 

aplicação de possíveis medidas preventivas.  

Objetivos Específicos  

Para a consolidação do objetivo geral, faz-se necessário realizar os 

seguintes objetivos específicos, como etapas pertinentes ao estudo:  

 Identificar e analisar as variáveis climáticas que contribuem para o aumento 

do risco de incêndios no cenário em estudo; 

 Desenvolver e adaptar uma rede neural artificial (RNA) e validar o modelo; 

 Avaliar o desempenho do modelo de RNA para classificar a ocorrência de 

focos de incêndio, validando sua eficácia preditiva. 
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3 FUNDAMENTAÇÃO TEÓRICA

3.1 Incêndio Florestal  

Incêndio é uma ocorrência de fogo não controlado, e pode ser 

extremamente perigoso para os seres vivos e estruturas. Considera-se como 

incêndios florestais a ocorrência do fogo em vegetação, sem controle e com 

potencial destrutivo, cuja incidência advém de causas naturais ou antrópicas, 

sendo estas últimas apontadas em muitas pesquisas como a principal origem 

dessas queimadas (Ramalho et al., 2021; Silva, 2017). 

Durante muitos anos o triângulo do fogo (combustível, comburente e calor 

ou energia térmica) foi utilizado para ensinar os componentes do fogo (Quadro 

1). Porém, se não houver condições ideais, ou seja, a presença simultânea e 

proporcional dos três componentes, não haverá sustentabilidade do fogo. Por 

isso, foi acrescentado ao triângulo do fogo (Figura 1) uma quarta face, 

denominada reação em cadeia, que interliga todos os elementos promovendo a 

existência e a continuidade do fogo (Corpo de Bombeiro Militar de Santa 

Catarina, 2018). 

 

Quadro 1 - Descrição dos componentes do fogo. 

Componente  Denominação 

Combustão  Ação exotérmica de uma substância combustível com um oxidante, 

usualmente acompanhada por chamas e/ou abrasamento e/ou 

emissão de fumaça. 

Fogo  processo de combustão caracterizado pela emissão de calor 

acompanhado por fumaça, chama ou ambos. 

Combustível  Fornece energia para a queima, representado por elementos 

susceptíveis a entrar em combustão como: madeira, papel, pano, 

estopa, entre outros. 

Comburente Substância que reage quimicamente com o combustível e inicia a 

combustão, sendo o principal comburente o oxigênio. 

Fonte de calor Necessário para iniciar a reação, pode ser desde luz solar, faíscas 

de raios atmosféricos a pontas de cigarro. 

Fonte: International Organization for Standardization (ISO) 
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Figura 1 Tríade do fogo e Tetraedro do fogo 

 
Fonte: gestaodesegurancaprivada.com.br (2021) 

 

Os incêndios desempenham um papel importante na regulação do clima 

regional e global, perturbando os processos meteorológicos, biogeoquímicos e 

hidrológicos (Zou et al., 2019). Outro agravante está associado às questões 

culturais de uso da terra, como por exemplo, a prática de queimadas para manejo 

da pastagem e preparo do solo para plantio de culturas agrícolas. O fogo também 

é usado para manejo da pecuária, em savanas e campos naturais, para remoção 

do excesso de biomassa e estímulo da rebrota (Pivello et al., 2021). De acordo 

com o relatório descrito pela Food and Agriculture Organization of the United 

Nations - FAO (2006), sobre incêndios na América do Sul em até 90% dos 

incêndios florestais são causados por atividades humanas. 

No Brasil, conforme Oliveira Júnior et al. (2017), os números de focos 

desses incêndios e de queimadas aumentaram significativamente nos últimos 

vinte anos, ocasionando considerável interesse por eventos que dizem respeito 

ao tema. Nessa perspectiva, conforme os dados do Instituto Nacional de 

Pesquisas Espaciais (INPE), no ano de 2019 houve crescimento de 48% no total 

de focos de incêndios no Brasil em relação ao ano anterior, enquanto em 2020 

ocorreu elevação de 12% em comparação com 2019.  

Um relatório recente do Banco Mundial identificou que o Brasil está entre 

os quatro países do mundo que mais utilizam o fogo para a queima de resíduos 

agrícolas. Estudos também indicam que existe uma forte relação entre anos de 

secas extremas e impactos na saúde devido à ocorrência de queimadas e 

incêndios florestais, como em anos de El Niño (Cassou, 2018) 
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Um outro fator importante sobre Incêndios Florestais, versa sobre os 

impactos econômicos, um estudo realizado por Silva (2022), apontou os 

recursos gastos pelas instituições: Corpo de Bombeiros, Exército, Núcleo de 

Operações e Transporte Aéreo e o ICMbio, resultando num gasto operacional 

total de R$ 358.438,97, com recursos empregados em 21 dias de combate aos 

incêndios. 

Os incêndios naturais e antropogênicos desempenham um papel 

fundamental no ciclo do carbono terrestre, e são uma importante fonte de 

emissões na atmosfera de gases do efeito de estufa, como o monóxido de 

carbono, aerossóis carbonáceos e uma série de outros gases e partículas 

(Adame et al., 2018; Akagi et al., 2011; Miranda et al., 2008; Van Der Werf et al., 

2010). 

3.1.1 Agentes Causadores de Incêndios 

Segundo a Organização das Nações Unidas para Agricultura e a 

Alimentação - FAO (2006), as principais causas dos incêndios florestais são: 

 Raios: causados diretamente por diversas descargas elétricas da atmosfera. 

Não existe responsabilidade humana. 

 Incendiários: provocados potencialmente por pessoas em propriedades 

alheias, seja por vingança ou por desequilíbrio mental. 

 Queima para limpeza: originados do uso do fogo na limpeza do terreno para 

fins agrícolas, florestais ou pecuários, que por negligência ou descuido 

escapam do controle e atingem áreas florestais. 

 Fumantes: provocados por fósforo ou por cigarros acesos. 

 Operações florestais: provocados por trabalhadores florestais em atividades 

na floresta. 

 Fogos de recreação: incêndios causados por pessoas que utilizam a floresta 

como local de recreação.  

 Estradas de ferro: incêndios causados diretamente ou indiretamente pelas 

atividades de ferrovias. 

 Diversos: incêndios com causa pouco frequente ou regionais não são 

enquadrados em uma classificação especial. Ex.: queda de aviões, incêndio 

de automóveis ou balões em festas juninas. 
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Parques et al., (2018) investigaram as principais causas de incêndios de 

alta gravidade em ecorregiões florestais da região oeste dos Estados Unidos 

entre 2002 e 2015, descobrindo que o combustível vivo foi o principal fator 

(53,1%) na causa desses incêndios, seguido pelo clima de incêndio (22,9%). A 

topografia (10,3%) e o clima (13,7%) tiveram impacto menor. 

 Os fatores associados às mudanças climáticas, como a diminuição da 

precipitação, o aumento das temperaturas e os períodos prolongados de seca, 

juntamente com os efeitos prejudiciais das atividades humanas, exacerbaram o 

risco de incêndios florestais em várias áreas (Tien Bui et al., 2018). 

Bhatt et al., (2023) citam como principais elementos influenciadores de 

incêndios florestais os fatores topográficos como elevação, aspecto e declive, 

variáveis climáticas como precipitação anual, velocidade do vento, índice de 

seca, temperatura e evapotranspiração, e um por último antropogênicos, 

nomeadamente a distância às estradas. Os incêndios florestais, especialmente 

os de grandes proporções, são o produto de dois fatores-chave que interagem 

entre si: suprimento de combustível e padrões climáticos. Nos últimos anos, 

foram feitos esforços significativos para estudar os regimes de incêndio 

históricos e atuais e avaliar a importância dos principais fatores nesses regimes. 

É notável a existência de uma relação potencial entre variáveis 

et al., 2019) aplicaram fatores 

meteorológicos para construir um índice de incêndios para avaliar a gravidade 

dos incêndios florestais na Sérvia. Já, Masinda et al., (2022) utilizaram os 

indicadores meteorológicos internacionais para avaliar a natureza selvagem das 

florestas no Nordeste da China.  

Estudos realizados (Butler et al., 2020; Moon et al., 2019), demostraram 

que a velocidade do vento numa direção favorável contribuirá para a propagação 

do incêndio. Nelson et al., (2002) estudaram os efeitos de diferentes velocidades 

do vento em modelos de propagação florestal, e a temperatura da superfície 

terrestre, a precipitação e a velocidade média do vento foram identificadas como 

indicadores secundários para análise posterior. 

 Adicionalmente, em um relatório oficial da Sérvia mostrou que as 

alterações na temperatura da superfície terrestre e na precipitação foram fatores 

et al., 2020).  
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Por essa razão, o desafio tanto da prevenção quanto da supressão é 

antecipar e reduzir o potencial de propagação de grandes incêndios florestais, 

assim como o risco subsequente para vidas humanas, propriedades e sistemas 

de uso do solo (Tyndall, 2023). 

3.1.2 Incêndios no Bioma Caatinga  

O bioma Caatinga compõe uma região de rica biodiversidade, que a 

caracteriza como o semiárido mais biodiverso do mundo (SEYFFARTH; 

RODRIGUES, 2017). Esse bioma, tem seu domínio estendido por cerca de 

912.529 km², o que corresponde aproximadamente a 11% do território nacional, 

presente em 10 estados brasileiros: Alagoas, Bahia, Ceará, Maranhão, Minas 

Gerais, Paraíba, Pernambuco, Piauí, Rio Grande do Norte e Sergipe.  

O bioma Caatinga é caracterizado por uma floresta sazonal seca com uma 

longa estação de estiagem e temperaturas médias elevadas, condições que o 

tornam naturalmente suscetível ao fogo (SOUZA et al., 2017). Embora a 

vulnerabilidade natural exista, são as atividades antrópicas as principais 

responsáveis pelos focos de incêndio, com registros associados a queimas para 

limpeza de pastagens, eliminação de restos vegetais e outras práticas que 

influem diretamente na propagação do fogo (Alvez et al., 2021). 

Essa pressão humana tem alterado o regime histórico do bioma. Conforme 

indicam estudos de longo prazo de Alencar et al. (2022), a Caatinga tem 

registrado uma concentração de incêndios na estação seca, entre julho e 

outubro. Portanto, a combinação das características fisiológicas e biogeográficas 

com as fontes de ignição humanas torna a Caatinga um ambiente propenso a 

incêndios, o que justifica a urgência no desenvolvimento de modelos preditivos, 

como o proposto neste trabalho, para o monitoramento do risco. 

Silva (2021), observou que em todo o bioma Caatinga, os estados que 

apresentaram estatisticamente o maior número médio de ocorrência de fogo 

para os anos estudados foram o Piauí (3592,5), a Bahia (1491,89) e o estado do 

Ceará (838,56). Para os demais estados não foram observadas diferenças 

estatísticas entre si. As maiores áreas médias queimadas foram registradas no 

estado do Piauí (65,20 ha), seguido do estado da Bahia (55,71 ha) e Minas 

Gerais (54,11 ha). Em contrapartida, o estado de Sergipe (31,05 ha) e Alagoas 

(31,63ha) apresentaram as menores médias de área queimada. 
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3.1.3 Exposição de Poluentes Oriundos de Incêndios 

Os impactos de poluentes atmosféricos na saúde já são conhecidos, e 

afetam principalmente as populações vulneráveis, como crianças, mulheres 

grávidas e idosos, e tem sido associada à mortalidade por todas as causas, 

principalmente por problemas cardiovasculares e respiratórios (Chen e Hoek, 

2020; Hvidtfeldt. et al, 2019). 

 Vários estudos têm relatado o impacto na saúde da exposição de curta 

duração, a partículas em suspensão com um diâmetro inferior a 2,5 micrômetros 

(PM 2,5) emitidas pelos incêndios, influenciando na mortalidade, em prejuízos 

cardiorrespiratórios e em internamentos hospitalares.  

Wettstein et al. (2018) descreveram uma associação entre visitas aos 

hospitais devido a doenças cardiovasculares, cerebrovasculares e respiratórias 

e a densidade de fumaça de incêndios florestais na Califórnia, enquanto, 

Arriagada et al. (2020) estimaram o número de hospitalizações relacionadas a 

doenças cardiovasculares e respiratórias, mortes e atendimento hospitalar 

relacionadas à asma, relacionadas à exposição de curto prazo ao PM2,5, devido 

à fumaça de incêndios florestais na Austrália.  

Jones et al. (2020) analisaram a associação entre exposição ao PM devido 

a incêndios florestais e parada cardíaca extra-hospitalar na Califórnia (EUA). 

Stowell et al. (2019) estimaram a ligação entre a exposição de curto prazo ao 

PM2,5 e eventos cardiorrespiratórios agudos no Colorado, usando um modelo 

de exposição que relaciona visitas ao departamento de emergência e 

hospitalizações por casos de doenças cardio respiratória aguda.  

Ravi et al. (2019) usaram o Programa de Mapeamento e Análise de 

Benefícios Ambientais para calcular a mortalidade adicional por todas as causas 

causada pela exposição a PM2,5 em incêndios prescritos na região noroeste do 

Pacífico dos Estados Unidos, estimando que apenas os incêndios prescritos 

causaram 280 a 700 mortes adicionais.  

Huang et al. (2019) quantificaram o impacto dos fogos prescritos na saúde 

humana, na Geórgia (EUA) durante as épocas de incêndios de 2015-2018, 

através dos atendimentos de urgência relacionadas com a asma, estimando um 

aumento no número de urgências por asma devido aos impactos dos incêndios. 
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Shi et al. (2019) avaliaram o impacto na qualidade do ar dos incêndios 

florestais ocorridos em dezembro de 2017 no sul da Califórnia, utilizando o 

modelo Weather Research and Forecasting with Chemistry, combinado com 

observações de satélite e de superfície. Os resultados mostraram que as 

concentrações de PM2,5 aumentaram significativamente, ultrapassando os 

limites de qualidade do ar dos EUA, indicando que este incêndio contribuiu para 

a exposição aguda e cumulativa de PM2,5 nesta região, o que pode causar morte 

prematura e efeitos cardiovasculares na população exposta (Shi et al., 2019).  

Zhang et al. (2023) também avaliaram o efeito da exposição a PM2,5 

relacionada a incêndios florestais, mas em mulheres grávidas, indicando um 

aumento no número de nascimentos prematuros ou baixo peso ao nascer. Em 

Portugal (Esteves et al., 2021; Miranda et al., 2012; Oliveira et al., 2016, 2020). 

Oliveira e cols. (2020) estimaram o impacto da exposição de curto prazo ao 

PM10 nos sintomas asmáticos em crianças asmáticas, e ao PM2,5 no número 

de internações hospitalares por doenças cardiovasculares, bem como na 

mortalidade em adultos (todas causas naturais), mostrando um aumento durante 

esses episódios. 

Os padrões de qualidade do ar adotados na legislação brasileira, são 

estabelecidos na resolução nº 03 do Conselho Nacional de Meio Ambiente  

Conama (1990), que estabelece limites aceitáveis apenas para o PM10 que é de 
-3 para a média diária. Embora seja de fundamental importância para a 

avaliação de impactos da poluição atmosférica por queimadas na saúde 

humana, poucos estudos têm investigado diretamente os efeitos do PM2,5 na 

saúde humana. 

3.2 Predição e Monitoramento de Incêndios 

O Instituto Nacional de Pesquisas Espaciais (INPE) tem, desde a década 

de 80, aprimorado seu sistema de detecção de queimadas no Brasil, com foco 

na Amazônia a partir de 1998. Essa atividade se alinha aos objetivos do instituto 

de desenvolver tecnologias e produtos de utilidade social, como monitorar focos 

de incêndio via satélite, prever riscos de queima da vegetação e estimar 

emissões. Segundo o próprio INPE (2023), o monitoramento por imagens de 

satélite é, desse modo, particularmente útil para regiões remotas sem outros 



24 
 

meios de acompanhamento, situação comum em grande parte do território 

nacional. 

 Os focos de queimadas passaram as ser obtidos por imagens dos satélites 

NOAA (National Oceanic and Atmospheric Administration) quatro vezes ao dia e 

mais recentemente também nas imagens do GOES-Leste (Geostationary 

Operational Environmental Satellite) oito ou mais vezes ao dia, e TERRA e 

AQUA duas vezes por dia cada, sendo em seguida integrados a dois sistemas 

de informações geográficas acessíveis na Internet. 

Em países como a Austrália, as informações sobre saúde pública são 

relacionadas com incêndios florestais e está disponível para o público em geral 

através do Ministério da Saúde daquele país, particularmente, sobre aqueles 

Estados que possuem histórico de episódios de queimadas 

Diferentes modelos têm sido comumente aplicados na predição desses 

eventos, incêndios   florestais   e queimadas, com a utilização de variáveis 

meteorológicas e de séries   históricas   de   dados   sobre   queimadas   e 

incêndios florestais, que podem ser descritos por séries temporais, modelos de 

regressões lineares (RL), modelos autorregressivos de médias móveis 

integradas (ARIMA) e as RNAs. 

Portanto, o estudo de séries temporais tem aplicações em diversas áreas 

do conhecimento, uma vez que permite entender a natureza estocástica de 

fenômenos, identificar padrões e prever valores futuros a partir de um histórico 

conhecido (Morettin e Toloi, 1981). 

3.2.1 Estudos Aplicados na Predição de Incêndios  

Li et al. (2016) conduziram uma pesquisa notável que se concentrou no uso 

de dados de sensoriamento remoto para detecção de incêndio. O estudo avaliou 

vários algoritmos, como máquinas de vetores de suporte, RNAs e árvores de 

decisão, e relatou que esses métodos possuem um potencial significativo para 

melhorar a precisão da detecção de incêndio.  

Chang et al (2012) dirigiram uma das primeiras revisões abrangentes sobre 

o uso de algoritmos no gerenciamento de incêndios, cobrindo tópicos como 

modelagem de comportamento de incêndio, previsão de propagação de incêndio 

e sistemas de apoio à decisão de gerenciamento de incêndio. O estudo sugere 

que a IA tem o potencial de melhorar as práticas de gestão de incêndios, 
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oferecendo previsões de incêndios mais precisas e confiáveis e ferramentas de 

apoio à decisão. 

Teixeira et al. (2020) administraram um estudo recente que enfoca a 

aplicação de algoritmos no contexto de preparação e resposta a incêndios 

florestais. O estudo fornece uma revisão completa de vários algoritmos, como 

florestas aleatórias, árvores de decisão e RNAs, e destaca seu potencial para 

aumentar a eficácia dos esforços de preparação e resposta durante um incêndio 

florestal. Estas pesquisas demonstram o interesse crescente na aplicação 

destes no campo da ciência e gestão de incêndios florestais e destacam o 

potencial destes métodos para melhorar as práticas de gestão de incêndios. 

  As estratégias de prevenção de incêndios florestais para detecção e 

supressão melhoraram significativamente ao longo dos anos, tanto devido às 

inovações tecnológicas quanto à adoção de diversas competências e métodos. 

Hoje em dia, os investigadores de incêndios florestais utilizam tecnologias que 

integram dados sobre previsão meteorológica, topografia, modelagem de 

combustível e outros fatores para prever como os incêndios se propagam 

(Zacharakis e Tsihrintzis, 2023; Bakhshaii e Johnson, 2019). O Quadro 2 

apresenta as pesquisas em destaque na área de estudo. 

Quadro 2  Pontos de destaques nas pesquisas da área de estudo 

Autor (Ano) Foco Principal do Estudo 

Viganó et al. (2017) 

Previsão de focos de incêndio no Pantanal com Redes Neurais 

Artificiais (RNA-MLP). 

Ghorbanzadeh et al. 

(2019) 

Mapeamento de suscetibilidade a incêndios utilizando RNA-MLP e 

múltiplas variáveis ambientais. 

Luz et al. (2023) 

Análise experimental do comportamento do fogo em espécies da 

Caatinga. 

Barboza et al. (2021) 

Previsão de incêndios no Cerrado com dados meteorológicos e 

aprendizado de máquina. 

Parente et al. (2021) 

Análise dos padrões e dos impulsionadores de áreas queimadas na 

Caatinga. 
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Jain et al. (2020) 

Revisão abrangente sobre o uso de aprendizado de máquina na 

ciência de incêndios. 

Rodrigues et al. (2024) 

Avaliação da suscetibilidade a incêndios em escala global com 

aprendizado de máquina. 

et al. (2019) Relação entre variáveis meteorológicas e incêndios florestais. 

et al. (2020) Influência da temperatura e precipitação no comportamento do fogo. 

BHATT et al. (2024) Estudo dos principais elementos que influenciam incêndios. 

LI et al. (2016) Uso de sensoriamento remoto para detecção de incêndios. 

TEIXEIRA et al. (2020) Aplicação de algoritmos para preparação e resposta a incêndios. 

ZACHARAKIS et al. 

(2020) Previsão de incêndios com dados de meteorologia e topografia. 

CHANG et al. (2012) Revisão sobre o uso de algoritmos em gerenciamento de incêndios. 

Fonte: Elaborado pelo autor, 2025. 

 

3.3 Redes Neurais Artificiais 

3.3.1 Definição e Fundamentos Teóricos 

  A inteligência artificial (IA) foi desenvolvida a partir da necessidade de se 

analisar um grande volume de dados através da computação de alto 

desempenho, onde a ferramenta neural é uma das direções da inteligência 

artificial.  

As RNAs são modelos computacionais, inspirados no sistema nervoso de 

seres vivos. A primeira rede neural foi concebida por Warren McCulloch e Walter 

Pitts em 1943. Eles escreveram um artigo seminal constituindo uma analogia 

entre as células nervosas e o processo eletrônico, em um artigo publicado no 

Bulletin of Mathematical Biophysics com o título: A Logical Calculus of the Ideas 

Immanent in Nervous Activity (Cálculo lógico de Ideias inerentes a Atividade 

nervosa). Assim, modelaram suas concepções criando uma rede neural simples 

com circuitos elétricos. 
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Numa relação entre neurônios e redes neurais, temos que os dendritos 

foram substituídos por entradas, cujas ligações com o corpo celular artificial são 

realizadas através de elementos chamados de peso que simulam as sinapses. 

Os estímulos captados pelas entradas são processados pela função de soma, e 

o limiar de disparo do neurônio biológico foi substituído pela função de 

transferência. 

 De acordo com Abraham et al. (2019), cada neurônio artificial possui 

terminais de entrada similares aos dendritos dos neurônios biológicos, que 

recebem uma informação, computam esse dado e, posteriormente, fornecem 

uma saída que será propagada para as demais unidades. Ferneda (2006) 

complementa que o comportamento das conexões entre os neurônios é definido 

por meio de pesos atribuídos a cada uma delas, sendo estes valores positivos 

ou negativos, a depender da finalidade do problema. 

 A Figura 2, apresenta um esquema comparativo de um neurônio biológico 

e a arquitetura da RNA. 
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Figura 2 Esquema comparativo entre (A) neurônio biológico e (B) 

arquitetura de RNA 

 

 

Legenda: (A) Esquema de um neurônio biológico; (B) arquitetura da RNA. 

Fonte: Rafael Manica (2012). 

3.3.2 Arquiteturas Fundamentais de RNAs 

A arquitetura de RNA refere-se ao seu design estrutural, ou seja, à forma 

como os seus componentes fundamentais: neurônios, camadas e conexões são 

organizados. É a arquitetura que define o fluxo de informação através da rede e 

a sua capacidade de aprender e modelar problemas de diferentes 

complexidades. 

O Perceptron de Camada Simples, é conhecido como Single Layer 

Perceptron, esta é a arquitetura mais elementar, consistindo em apenas uma 

camada de entrada conectada diretamente a uma camada de saída, sem 

camadas intermediárias. Sua simplicidade limita sua capacidade de resolver 

problemas não linearmente separáveis. 
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Figura 3 - Arquitetura de Perceptron de Camada Simples. 

 

 
Fonte: Biondi, et. al., 2009. 

 

O Perceptron de Múltiplas Camadas (MLP), representa uma evolução 

significativa, constituindo-se de uma camada sensorial de entrada, uma ou mais 

camadas ocultas intermediárias e uma camada de saída. A presença de 

camadas ocultas permite que a rede aprenda representações hierárquicas e 

resolva problemas complexos não lineares. Conforme Oliveira (2024), o número 

de neurônios nas camadas de entrada e saída é determinado pelas variáveis do 

problema, enquanto as camadas ocultas podem ser ajustadas para otimizar o 

desempenho. 
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Figura 4 - Arquitetura de Perceptron de Múltiplas Camadas 

  

                 Fonte: Biondi, et. al., 2009. 

3.3.3 Mecanismo de Aprendizado e Propriedades Fundamentais 

O processo de aprendizado em RNAs constitui o cerne de sua capacidade 

adaptativa. Para cada padrão de entrada apresentado à rede, o algoritmo de 

aprendizado avalia a qualidade da resposta produzida mediante comparação 

com o resultado esperado. O erro calculado entre esses dois valores é então 

retropropagado através da rede, orientando os ajustes nos pesos das conexões 

sinápticas com o objetivo de melhorar o desempenho em interações futuras 

(Ferneda, 2003). 

Este mecanismo de aprendizado confere às RNAs propriedades 

distintivas que as tornam particularmente adequadas para problemas 

complexos. Braga et al. (2014) sintetizam as principais características: 

i)    organização de dados; 

ii) adaptação do modelo por experiência;  

iii) capacidade de aprendizado;  

iv) armazenamento distribuído;  

v)  tolerância a falhas; 

vi)  habilidade de generalização;  
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vii) controle e otimização de sistemas; 

viii) processamento de sinais e predição  

(Braga et al, 2014). 

 As propriedades adicionais que fundamentam a versatilidade das RNAs, 

de acordo com Haykin (2001) são: não-linearidade inerente que permite modelar 

relações complexas; mapeamento entrada-saída para aproximação de funções; 

adaptabilidade a mudanças ambientais; resposta a evidências incompletas ou 

conflitantes; tolerância a falhas robusta; uniformidade de análise e analogia 

neurobiológica consistente; implementação VLSI eficiente. 

Essas propriedades coletivas explicam a aplicabilidade bem-sucedida de 

RNAs em problemas ambientais complexos, incluindo detecção de fumaça, 

monitoramento de florestas, previsão de queimadas e análise de uso do solo. No 

contexto de ecossistemas sensíveis, as técnicas baseadas em RNAs têm 

demonstrado capacidade de melhorar significativamente o poder preditivo de 

modelos ambientais (França et al., 2009; Hauser et al., 2012; Acharya et al., 

2014), justificando sua adoção para a previsão de incêndios florestais no bioma 

Caatinga. 

3.3.4 Paradigmas de Aprendizado e Algoritmos 

O aprendizado em RNAs configura-se como um processo fundamental e 

interativo, por meio do qual a rede ajusta seus parâmetros internos para mapear 

entradas às saídas desejadas, tendo como objetivo primordial a generalização 

para dados não observados durante o treinamento. Conforme define Oliveira 

(2024), tal processo corresponde a um algoritmo de otimização voltado ao ajuste 

dos pesos e bias da rede, com a finalidade de minimizar um erro predefinido. 

 A capacidade de generalização representa uma meta essencial do 

treinamento, assegurando que a rede possa "responder adequadamente a 

estímulos que não fizeram parte da amostra de treinamento", conforme 

destacado por Maeda et al. (2009). Por meio desse refinamento paramétrico, as 

RNAs tornam-se capazes de identificar e extrair padrões complexos dos dados, 

competência crucial em aplicações práticas, como a "identificação de padrões 

na detecção de queimadas", conforme exemplificado por Duarte Neto et al. 

(2011). 



32 
 

Bishop (1995) classifica os paradigmas de aprendizado em duas 

categorias principais: a primeira categoria é do aprendizado supervisionado, que  

um supervisor externo fornece à RNA a saída desejada em relação a um padrão 

de entrada, sendo possível comparar a saída da RNA com a saída desejada, 

obtendo-se o erro referente à resposta atual, e a partir disso, os pesos sinápticos 

são ajustados de forma a minimizar o erro, e a minimização do erro é 

incremental, pois a cada resposta gerada pela rede, são efetuados pequenos 

ajustes nos pesos das conexões; e a outra categoria é o aprendizado não 

supervisionado, é o paradigma que não existe um supervisor acompanhando o 

processo de aprendizagem, e a RNA deve procurar algum tipo de correlação ou 

redundância nos dados de entrada. 

Para este estudo, foi selecionado o algoritmo Adam (Adaptive Moment 

Estimation), desenvolvido por Kingma e Ba (2014), este otimizador combina as 

vantagens do momentum, que acelera a convergência direcionando as 

atualizações na direção da média passada dos gradientes, com o RMSProp, que 

adapta individualmente a taxa de aprendizado para cada parâmetro.A escolha 

do algoritmo Adam, justifica-se por sua eficiência computacional, robustez em 

problemas com gradientes esparsos ou ruidosos, e menor necessidade de ajuste 

fino de hiperparâmetros comparado a alternativas como o SGD (Stochastic 

Gradient Descent). Essas características tornam-no particularmente adequado 

para a previsão de incêndios florestais, que envolve relações complexas e não 

lineares entre variáveis meteorológicas. 

3.3.5 Funções de Ativação 

Segundo Oliveira (2024), a função de ativação opera de maneira análoga 

ao axônio de um neurônio biológico, pois é responsável por disparar o sinal de 

saída de um neurônio para outro após um certo limiar ser atingido. O autor 

prossegue descrevendo as principais funções de transferência (ou ativação) 

usadas no processamento neural artificial. 

De acordo com Haykin (2001), existem vários tipos de funções de ativação 

empregadas em RNAs, cada uma com características específicas. As mais 

utilizadas são: 

- Função Limiar (ou Degrau), restringe a saída de um neurônio a valores binários, 

como 0 e 1, e a saída assume o valor um (1) se a entrada líquida (soma 
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ponderada) for maior ou igual a zero, e zero (0) caso contrário, é comumente 

utilizada em Perceptrons para tarefas de classificação (Equação 1); 

                                     (1) 

- Função Sigmoidal, é a função de ativação mais comum, definida como uma 

função crescente que proporciona um equilíbrio adequado entre o 

comportamento linear e não-linear, a função sigmoide restringe a saída do 

neurônio a um intervalo entre 0 e 1, sendo a escolha padrão para a camada de 

saída em problemas de classificação binária (Equação 2); 

                                                                (2) 

- Função Tangente Hiperbólica (Tanh), função frequentemente utilizada como 

uma alternativa à função logística, e embora preserve a forma sigmoidal, seu 

intervalo de saída é de -1 a 1, e como a função log-sigmóide, ela é estritamente 

crescente e amplamente aplicada em redes neurais (Equação 3); 

                           (3) 

- Função ReLU (Rectified Linear Unit), é definida como uma função de unidade 

de ativação linear retificada que retorna zero para qualquer entrada que seja 

negativa, mas retorna qualquer valor positivo x como retorno (Equação 4).  

A ReLU resulta em uma saída em um intervalo de zero a infinito (Bhatt, 

Chouhan, 2024). 

                                                                                                  (4)     
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4 MATERIAIS E MÉTODOS 

O procedimento metodológico do estudo, encontra-se descrito na Figura 5.  

 

Figura 5 - Fluxograma das etapas metodológicas do estudo 

 

Fonte: Elaborado pelo autor, 2025. 

O modelo foi construído, inicialmente, utilizando um conjunto de dezesseis 

(17) variáveis de entrada, que incluiu: PRECIP - Precipitação Acumulada (mm); 

PATMNE-Pressão Atmosférica Média (hPa); PATMAX- Pressão Atmosférica 

Máxima (hPa); PATMIN - Pressão Atmosférica Mínima (hPa); RADGLB- 

Radiação Global (W/m²); TEMPBUL-Temperatura do Ar bulbo seco (°C); 

TEMPORV -Temperatura do Ponto de Orvalho (°C) ; TEMPMAX- Temperatura 

Máxima do Ar (°C); TEMPMIN - Temperatura Mínima do Ar (°C); TMAXORV- 

Temperatura Máxima do Ponto de Orvalho (°C) ; TMINORV- Temperatura 

Mínima do Ponto de Orvalho (°C); UMIRMAX- Umidade Relativa Máxima (%); 
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UMIRMIN - Umidade Relativa Mínima (%); UMIDREL- Umidade Relativa Média; 

DIRVENT- Direção do Vento (m/s); RAJMAX- Rajada Máxima de Vento (m/s); 

VELVENT- Velocidade do Vento (m/s). 

Como dados de saída, para calibração e validação, foram empregados os 

registros de fogo ativo obtidos por satélite. E na etapa de processamento, a série 

histórica de dados de 2019 a 2024 foi utilizada para o treinamento e a validação 

do modelo.  

 

4.1 Área de Estudo 

O estudo abrange uma área de aproximadamente 3.080,00 km² no Sertão 

dos Inhamuns, localizada na microrregião do Sertão de Crateús, no estado do 

Ceará, região representativa do semiárido nordestino. A delimitação da área de 

estudo foi realizada por meio de uma bounding box, que define os limites 

geográficos do território de interesse. 

Em Visão Computacional, a bounding box é a representação mais comum 

para a localização de objetos em uma imagem. Caracteriza-se pelo menor 

retângulo que circunscreve completamente um objeto de interesse, definido 

pelas coordenadas de seus cantos ou por uma coordenada de referência 

acrescida de sua largura e altura. Essa abordagem é fundamental em tarefas de 

detecção de objetos, onde algoritmos de aprendizado profundo são treinados 

para prever as coordenadas da bounding box ao redor de cada objeto 

identificado (GONZALEZ; WOODS, 2010). 

As coordenadas da bounding box para a área do Sertão de Crateús são: 

Longitude Mínima (oeste): -40.950; Latitude Mínima (sul): -5.350; Longitude 

Máxima (leste): -40.450; Latitude Máxima (norte): -4.850. conforme ilustrado nas 

Figuras 6 e 7. 
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Figura 6 - Área do Estudo e abrangência na região do sertão de Crateús, CE.
 

 
Fonte: Adaptado GOOGLE earth (2025) 

 

Figura 7 - Área de Estudo com destaque para a bounding box, Microrregião do 
Sertão de Crateús, CE. 
 

.  
Fonte: Adaptado GOOGLE earth (2025) 
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O clima da região é classificado como semiárido, caracterizado pela 

escassez hídrica ao longo do ano, predominante em aproximadamente 92% do 

território cearense, especialmente na região central. O regime pluviométrico é 

concentrado em três meses (fevereiro a abril), seguidos por nove meses de 

estiagem, resultando em índices pluviométricos entre 500 e 800 mm. Essa 

irregularidade causa déficit hídrico significativo para a agricultura e população 

local (Ebbesen, 2016). As macrorregiões do Cariri, Sertão Central, Crateús, 

Inhamuns, Centro Sul e Vale do Curu apresentam os menores índices 

pluviométricos (Nascimento et al., 2022). 

 Na escala de Köppen-Geiger, o clima seco do Ceará é classificado como 

BSh  clima seco semiárido quente. Durante o período seco, a temperatura do 

solo pode atingir 60°C, e a alta incidência solar acelera a evaporação de corpos 

d'água (ASSOCIAÇÃO CAATINGA, 2004). 

A Tabela 1 sumariza as principais características da área de estudo, 

incluindo área, população, coordenadas e índice pluviométrico. 

 

Tabela 1 - Estimativa da População, Área, Índice Pluviométrico, coordenadas e 
clima da região em estudo. 
 

Município 
Área 
(km²) 

População 
2022 
(hab.) 

Coordenadas 
da Sede 

Índice 
Pluviométrico 

(mm) 

Crateús 3.080,00 76.390 -40.950, -5.350, -40.450, -4.850 656,4 

Fonte: Instituto Brasileiro de Geografia e Estatística (IBGE) / Instituto de Pesquisa e Estratégia 
Econômica do Ceará (IPECE), 2022. 

 

4.2 Coleta de Dados 

4.2.1 Fontes de Dados Meteorológicos 

Para a realização deste estudo, foram utilizados dados meteorológicos 

secundários da região do Sertão de Crateús, referentes ao período de 2019 a 

2024. Os dados foram extraídos das plataformas do Instituto Nacional de 

Meteorologia (INMET) e do Centro de Previsão de Tempo e Estudos Climáticos 

(CPTEC) do Instituto Nacional de Pesquisas Espaciais (INPE). 

Adicionalmente, foram utilizadas as médias compensadas diárias e 

mensais das variáveis meteorológicas. O período de 2019 a 2024 foi selecionado 
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por apresentar séries históricas com maior estabilidade de dados disponíveis no 

INPE e no INMET, e por coincidir com o período de estiagem característico da 

região. 

O banco de dados do INMET abriga dados meteorológicos diários em forma 

digital, de séries históricas das várias estações meteorológicas convencionais da 

rede de estações do INMET com milhões de informações, referentes às 

medições diárias, de acordo com as normas técnicas internacionais da 

Organização Meteorológica Mundial (INMET,2023). 

A Tabela 2, apresenta uma amostra reduzida de dados utilizados para o 

treinamento inicial da rede neural, demonstrando médias mensais de variáveis 

meteorológicas para o segundo semestre de 2024. 

 
Tabela 2 - Relação sintetizada de dados de médias mensais de variáveis 
meteorológicas para o segundo semestre de 2024. 

 

Variável 
Meses de 2024 

Julho Agosto Setembro Outubro Novembro Dezembro 

PRECIP(mm) 0.0 0.0 0.0 0.0 0.0 0.1 

PATMNE (hpa) 980.7 980.4 979.2 978.2 977.2 977.1 

PATMAX (hpa) 980.9 980.7 979.5 978.5 977.5 977.4 

PATMIN (hpa) 980.4 980.1 978.9 977.9 976.9 976.8 

 RADGLB (W/m²) 563.4 788.1 897.2 890.6 948.6 793.0 

TEMPBUL (°C) 27.2 27.9 29.3 29.9 30.1 29.7 

TEMPORV (°C) 17.2 14.8 15.5 16.9 16.4 17.6 

TEMPMAX(°C) 27.9 28.6 30.0 30.7 30.8 30.5 

TEMPMIN (°C) 26.6 27.2 28.6 29.3 29.4 29.1 

TMAXORV (°C) 17.6 15.3 16.1 17.4 16.9 18.0 

TMINORV (°C) 16.8 14.3 15.0 16.4 15.9 17.1 

UMIRMAX (%) 59.1 49.3 48.4 50.8 48.8 53.3 

UMIRMIN (%) 54.3 44.5 43.5 46.0 44.1 48.7 

UMIDREL (%) 56.6 46.8 45.9 48.4 46.4 51.0 

DIRVENT (°) 124.4 129.3 101.4 84.9 82.9 79.9 

RAJMAX (m/s) 4.9 4.7 5.8 6.5 6.5 6.3 

VELVENT(m/s) 1.7 1.7 2.0 2.1 2.1 2.1 

Fonte: INME, 2024. 

Legenda: Mês: referência dos dados (07 = julho, 08 = agosto, etc.); (PRECIP): Precipitação 
Acumulada (mm) - Média mensal da precipitação diária; (PATMNE): Pressão Atmosférica 
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Média (hPa) - Média mensal da pressão ao nível da estação; (PATMAX): Pressão 
Atmosférica Máxima (hPa) - Média mensal dos valores máximos diários de pressão; 
(PATMIN): Pressão Atmosférica Mínima (hPa) - Média mensal dos valores mínimos diários 
de pressão; (RADGLB): Radiação Global (W/m²) - Média mensal da radiação solar global 
incidente; (TEMPBUL): Temperatura do Ar (°C) - Média mensal da temperatura do ar (bulbo 
seco); (TEMPORV): Temperatura do Ponto de Orvalho (°C) - Média mensal da temperatura 
do ponto de orvalho; (TEMPMAX): Temperatura Máxima do Ar (°C) - Média mensal das 
temperaturas máximas diárias; (TEMPMIN): Temperatura Mínima do Ar (°C) - Média mensal 
das temperaturas mínimas diárias; (TMAXORV): Temperatura Máxima do Ponto de Orvalho 
(°C) - Média mensal das temperaturas máximas diárias do ponto de orvalho; 
(TMINORV): Temperatura Mínima do Ponto de Orvalho (°C) - Média mensal das 
temperaturas mínimas diárias do ponto de orvalho; (UMIRMAX): Umidade Relativa Máxima 
(%) - Média mensal dos valores máximos diários de umidade; (UMIRMIN): Umidade Relativa 
Mínima (%) - Média mensal dos valores mínimos diários de umidade; (UMIDREL): Umidade 
Relativa Média (%) - Média mensal da umidade relativa do ar; (DIRVENT): Direção do Vento 
(°) - Média mensal da direção do vento em graus; (RAJMAX): Rajada Máxima de Vento (m/s) 
- Média mensal das rajadas máximas diárias de vento; (VELVENT): Velocidade do Vento 
(m/s) - Média mensal da velocidade do vento. 
 

 
Para o monitoramento sistemático de focos de incêndio no período de 2019 

a 2024, adotou-se uma abordagem multi-satelital, integrando dados de sensores 

orbitais com características complementares. A coleta de dados baseou-se nos 

produtos Fire Active gerados pela constelação de satélite de observação 

terrestre da NASA, com ênfase nas plataformas TERRA e AQUA. Esses 

satélites, em órbitas polares e heliossíncronas, garantem cobertura global com 

revista diária ou bidiária, assegurando a temporalidade necessária para o 

acompanhamento dinâmico de queimadas (NASA, 2020).  

O sensor MODIS (Moderate Resolution Imaging Spectroradiometer), 

operacional a bordo dessas plataformas, forneceu dados multiespectrais em 36 

bandas, com resolução espacial nominal de 1 km. Complementarmente, 

utilizaram-se dados do sensor VIIRS (Visible Infrared Imaging Radiometer Suite), 

a bordo do satélite Suomi-NPP, que apresenta resolução espacial superior (375 

m) na faixa do infravermelho médio, particularmente adequada para a detecção 

de incêndios de menor escala (NOAA, 2021).  

O satélite NOAA-20, integrante do Joint Polar Satellite System (JPSS), 

também foi incorporado à análise, ampliando a redundância temporal e espacial 

do sistema de monitoramento. 

Os dados brutos foram obtidos diretamente da plataforma FIRMS (Fire 

Information for Resource Management System) da NASA. Os produtos originais 

incluíram arquivos nos formatos vetorial (shapefile), matricial (textfile) e tabular 

(CSV), contendo metadados essenciais para a análise, tais como: Coordenadas 
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geográficas (latitude e longitude); Data e hora da detecção (UTC); satélite/sensor 

de origem; Índice de confiança do fogo (confidence); Área ou pixel afetado.  

Após a coleta, os dados passaram por várias etapas de pós-

processamento. A filtragem de qualidade removeu detecções com índice de 

confiança (confidence) inferior a 80%, conforme a metodologia validada por 

Giglio et al. (2020), e excluiu registros que estavam fora da área de interesse. A 

padronização dos metadados incluiu a unificação dos formatos de data/hora e o 

ajuste dos sistemas de referência espacial. Para o georreferenciamento, foi 

realizada a espacialização precisa em Sistemas de Informação Geográfica 

(SIG), com correções para distorções orbitais, além da validação cruzada com 

imagens de alta resolução. A análise termodinâmica foi feita usando a 

temperatura do pixel (brightness), com valores em Kelvin para a identificação de 

hotspots, e o Poder Radioativo do Fogo (FRP), que é a potência radiante em 

megawatts (MW), para estratificar os incêndios por intensidade. 

 O fluxograma da Figura 8 e o Quadro 3, ilustram as principais fases do 

processamento de dados, destacando a integração dos diferentes sensores e as 

etapas de validação e caracterização. 
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Figura 8 - Fases do processamento de dados e as etapas de validação e caracterização.

Fonte: Elaborado pelo autor, 2025.
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Quadro 3  Resumo da Metodologia 

Etapa Descrição Fontes de Dados/ 

Ferramentas 

Período / Detalhes 

1.Definição da 

Área de Estudo 

Delimitação geográfica da 

microrregião a ser 

estudada. 

Coordenadas: 

Longitude Mínima, 

Latitude Mínima e 

Longitude Máxima, 

Latitude Máxima. 

Área representativa do 

semiárido nordestino. 

2.Coleta de 

Dados 

Coleta de dados 

meteorológicos e de focos 

de calor. 

INME, INPE, NASA 

FIRMS, TERRA, 

AQUA, Suomi-NPP e 

NOAA-20). 

Dados de 2019 a 2024. 

3.Processamento 

de Dados de 

Focos de Calor 

Abordagem multi-satelital, 

filtragem de qualidade, 

padronização de 

metadados, 

georreferenciamento, 

análise termodinâmica. 

Sensores MODIS (1km) 

e VIIRS (375m). 

Focos de incêndio:1 

(ocorrência) ou 0 (não 

ocorrência). 

4.Processamento 

de Dados 

Climatológicos 

Seleção de variáveis 

meteorológicas. 

ANA e INMET. Cálculo de médias diárias 

para cada variável. 

5.Aplicação da 

RNA 

Utilização de modelo 

Perceptron de 

Multicamadas (MLP) com 

algoritmo de 

retropropagação de erros 

(backpropagation). 

Linguagem de 

programação Python e 

bibliotecas para análise 

estatística. 

Dados de 2019 a 2024 para 

construção da RNA. 

6.Análise de 

Importância das 

Variáveis 

Determinação da influência 

de cada variável na 

predição de focos de 

incêndios. 

Método de permutação 

de features. 

Identificação de variáveis 

mais relevantes. 

7.Avaliação de 

Desempenho do 

Modelo 

Análise da acurácia do 

modelo. 

Curvas de aprendizado. Avaliação de Acurácia global 

e, sensibilidade. 

Fonte: Elaborado pelo autor, 2025. 
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4.2.2 Processamento de Dados Climatológicos

As variáveis meteorológicas selecionadas para análise de correlação 

incluem: Precipitação Diária Acumulada (mm), Radiação Global (KJ/m2), 

Temperatura Máxima (°C), Umidade Relativa do Ar e Velocidade do Vento (m/s) 

necessárias para a aplicação do método de predição. 

Os dados de precipitação serão selecionados das estações da Agência 

Nacional de Águas (ANA), que contém dados recentes de precipitação e que 

estão presentes no entorno e dentro da área de estudo. Os dados de Radiação 

Global (KJ/m2), Temperatura Máxima(°C), Umidade Relativa do Ar e Velocidade 

do Vento (m/s) serão retirados de uma estação automática do INMET. 

A partir destes dados de estação, serão calculadas as médias diárias para 

cada variável. 

4.2.3 Preparação e Análise de Dados para Modelagem 
 

Partiu-se de uma massa de dados brutos contendo 18.598 registros 

diários e 17 variáveis, abrangendo o período de junho a dezembro dos anos de 

2019 a 2024, intervalo mais propenso a incêndios no bioma da Caatinga. 

No entanto, um dos objetivos deste estudo foi reduzir o número de 

variáveis de entrada para o modelo, tornando-o mais simples, acessível, fácil de 

usar e interativo para diversos públicos, como órgãos governamentais nas 

esferas federal, estadual e municipal, empresas de diferentes portes, 

organizações não-governamentais (ONGs) e comunidades locais.  

Uma análise aprofundada de importância e correlação indicou que um 

subconjunto reduzido de variáveis seria mais eficaz para aplicações práticas, 

sem comprometer a capacidade preditiva. Após um rigoroso processo de 

refinamento, que incluiu a limpeza dos dados, a filtragem de inconsistências e a 

seleção das variáveis mais relevantes, chegou-se a um conjunto final de 5.470 

registros válidos. 

Estes registros foram estrategicamente balanceados, distribuindo-se 

igualmente 5.470 registros para cada uma das seis variáveis preditivas principais 

identificadas pela análise de pesos da camada oculta da RNA: precipitação 

(PRECIP), temperatura máxima (TEMPMAX), velocidade do vento (VELVENT), 

radiação global (RADGLB), umidade relativa (UMIDREL) e Mês Crítico 

(MES_CRITICO).  
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Os dados foram vetorizados, associando cada conjunto de variáveis de 

entrada (características meteorológicas) numericamente à sua respectiva saída 

(ocorrência ou não de fogo: 1 ou 0). Este procedimento assegurou a qualidade, 

consistência e homogeneidade do dataset utilizado para a modelagem 

subsequente. 

O conjunto de dados foi dividido em três subconjuntos para o treinamento 

da RNA, seguindo a proporção: treinamento (70%), validação (15%) e teste 

(15%). A divisão foi realizada de forma estratificada, preservando a proporção 

da variável target (ocorrência de fogo) em cada conjunto, visando 

evitar overfitting e garantir a generalização do modelo. 

4.2.4 Arquitetura da RNA 
 

A RNA implementada foi do tipo Multilayer Perceptron (MLP), composta 

por uma camada de entrada, uma camada oculta e uma camada de saída. 

A camada de entrada do modelo é composta por 6 neurônios, 

correspondendo às seis variáveis de entrada selecionadas e otimizadas: 

Radiação Global (RADGLB), Umidade Relativa (UMIDREL), Temperatura 

Máxima (TEMPMAX), Precipitação (PRECIP), Velocidade do Vento (VELVENT) 

e Mês Crítico (MES_CRITICO). 

A camada oculta foi objeto de otimização, testando-se diferentes números 

de neurônios (5, 10, 15 e 20) e funções de ativação (ReLU, Sigmoid e Tanh). A 

camada de saída possui um único neurônio com função de ativação sigmoidal, 

apropriada para problemas de classificação binária. A Figura 9 ilustra a 

arquitetura geral da RNA. 

 

 

 

 

 

 

 

 

 



45 
 

Figura 9 - Representação esquemática da RNA com uma camada oculta.

 

 

Fonte: Elaborado pelo autor, 2025. 

4.2.5 Treinamento e Configuração do Modelo 
 

O algoritmo de treinamento empregado foi o Adam (Adaptive Moment 

Estimation), um método de otimização estocástica que combina as vantagens 

dos algoritmos AdaGrad e RMSProp, adaptando a taxa de aprendizado para 

cada parâmetro. A função de perda utilizada foi a entropia cruzada binária (binary 

cross-entropy), adequada para problemas de classificação binária. 

A seleção do melhor modelo foi realizada mediante uma busca em grade 

(grid search) sobre as combinações de funções de ativação e número de 

neurônios na camada oculta. Foram testadas 12 combinações possíveis (3 

funções de ativação × 4 números de neurônios). Cada modelo foi treinado por 

50 épocas com tamanho de lote (batch size) de 32. O desempenho de cada 

configuração foi avaliado no conjunto de validação, utilizando a acurácia como 

métrica principal. A configuração que obteve a maior acurácia no conjunto de 

validação foi selecionada como a melhor. 
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Após a seleção, o modelo foi retreinado utilizando os conjuntos de 

treinamento e validação combinados, e sua performance final foi avaliada no 

conjunto de teste. Essa metodologia assegura que o modelo escolhido seja 

aquele que apresenta a melhor generalização para dados não vistos.  
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5 RESULTADOS E DISCUSSÃO 

Esta seção apresenta os resultados obtidos a partir da aplicação do 

modelo de previsão de focos de incêndios florestais utilizando RNAs, bem como 

a discussão aprofundada sobre a importância das variáveis, o desempenho do 

modelo durante o treinamento e as implicações desses achados para a predição 

de incêndios no semiárido nordestino. A análise detalhada do modelo foi 

realizada com base nos dados e metodologias descritas na seção 5 deste 

trabalho, visando fornecer uma compreensão abrangente da capacidade 

preditiva e das características operacionais da solução proposta. 

5.1  Análise Inicial com Todas as Variáveis 
 

Inicialmente, o modelo de previsão de incêndios florestais foi concebido 

para operar com um conjunto abrangente de variáveis, visando capturar a 

máxima complexidade dos fatores ambientais. Este conjunto inicial incluía dados 

detalhados como Pressão Atmosférica ao Nível da Estação (mB), Pressão 

Atmosférica Máxima (mB), Pressão Atmosférica Mínima na Hora Anterior (mB), 

Radiação Global (KJ/m2), Temperatura do Ar Bulbo Seco (°C), Temperatura do 

Ponto de Orvalho (°C), Temperatura Máxima na Hora (°C), Temperatura Mínima 

(°C), Temperatura do Orvalho Máxima (°C), Temperatura do Orvalho Mínima 

(°C), Umidade Relativa Máxima, Umidade Relativa Mínima, Umidade Relativa do 

Ar, Direção do Vento Horária (graus), Rajada Máxima do Vento (m/s) e 

Velocidade do Vento Horária (m/s).  

A riqueza analítica proporcionada por um extenso quantitativo de dados 

veio acompanhada de desafios operacionais e práticos. Modelos com um grande 

número de variáveis, além de demandarem alta capacidade computacional e 

maior volume de dados para treinamento, tornam-se complexos para 

interpretação e são mais suscetíveis a overfitting. Essa complexidade representa 

uma barreira significativa para a implementação em órgãos governamentais ou 

comunidades locais, que frequentemente possuem recursos limitados.  

Portanto, centralizar esforços para simplificar o modelo, tornando-o mais 

acessível e prático sem perder a acurácia preditiva, configurou-se como a 

abordagem central para viabilizar a aplicação do modelo.  
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A justificativa para a redução do número de variáveis baseia-se em 

diversos princípios da modelagem preditiva e da ciência de dados: 

 Interpretabilidade: Modelos mais simples, com menos variáveis, são 

intrinsecamente mais fáceis de entender e explicar. Isso é crucial para que os 

tomadores de decisão possam confiar e utilizar as previsões do modelo de forma 

eficaz. 

 Eficiência Computacional: Um menor número de variáveis reduz a 

carga computacional para treinamento e inferência do modelo, tornando-o mais 

rápido e menos intensivo em recursos, o que é vital para sistemas de alerta em 

tempo real. 

 Generalização: A redução de variáveis pode ajudar a mitigar o risco de 

overfitting, onde o modelo aprende ruídos nos dados de treinamento em vez de 

padrões generalizáveis, resultando em um desempenho deficiente em dados 

não vistos. 

 Coleta de Dados Simplificada: A dependência de um conjunto menor de 

variáveis simplifica o processo de coleta e manutenção de dados, tornando o 

modelo mais robusto e aplicável em regiões onde a disponibilidade de dados é 

limitada. 

 Relevância Prática: Focar nas variáveis mais influentes permite que os 

esforços de monitoramento e as estratégias de prevenção sejam direcionados 

aos fatores de maior impacto, otimizando a alocação de recursos. 

Assim, a pesquisa evoluiu para uma abordagem de redução de variáveis, 

focando em um subconjunto mais conciso e relevante, composto por cinco 

variáveis meteorológicas chave (UMIDREL, TEMPMAX, RADGLB, VELVENT, 

PRECIP) e uma variável categórica para os meses críticos (MES_CRITICO), 

visando otimizar a praticidade e a usabilidade sem comprometer a acurácia 

preditiva. 

No contexto do bioma Caatinga. Estudos como o de Silva et al. (2023) 

destacam que a suscetibilidade do bioma ao fogo é acentuada por seu clima, 

que naturalmente apresenta altas temperaturas e baixa umidade relativa. Além 

disso, Parente et al. (2021) demonstraram que os maiores picos de área 

queimada na Caatinga ocorreram em anos de seca, influenciados por anomalias 

climáticas como o El Niño, reforçando a validade das variáveis atmosféricas 

utilizadas neste trabalho como preditoras de risco.  
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Em uma análise de escala global, Rodrigues et al. (2024) também 

identificaram, por meio de aprendizado de máquina, que a temperatura média do 

trimestre mais seco e a precipitação anual estão entre os preditores mais 

importantes da suscetibilidade a incêndios no mundo, o que valida a abordagem 

metodológica e a seleção de variáveis aqui adotadas.  

5.2  Análise da Importância das Variáveis 

A determinação da importância das variáveis de entrada para o modelo 

de RNA foi essencial para compreender quais fatores ambientais exercem maior 

influência na predição de focos de incêndios. Para tal, empregou-se o método 

de permutação de features, uma técnica que avalia a contribuição de cada 

variável ao medir a diminuição da acurácia do modelo quando seus valores são 

aleatorizados, conforme descrito por Breiman (2001). Este método permitiu 

identificar as variáveis mais relevantes, fornecendo percepções sobre os 

mecanismos subjacentes à ocorrência de incêndios florestais na região de 

estudo. 

De acordo com os resultados da execução do script Python com o 

conjunto de variáveis reduzido, a análise de importância das variáveis revelou 

uma ordem de influência distinta daquela que havia sido inicialmente 

considerada. As variáveis meteorológicas selecionadas para o modelo otimizado 

foram Radiação Global (RADGLB), Umidade Relativa (UMIDREL), Temperatura 

Máxima (TEMPMAX), Precipitação (PRECIP) e Velocidade do Vento 

(VELVENT), além da variável categórica Mês Crítico (MES_CRITICO), que 

representa os meses de julho a outubro. A ordem decrescente de importância 

relativa, conforme determinado pelo modelo, foi a seguinte: 

1. Mês Crítico (MES_CRITICO): 27.91%  

2. Radiação Global (RADGLB): 20.68%  

3. Temperatura Máxima (TEMPMAX): 18.94%  

4. Velocidade do Vento (VELVENT): 14.86%  

5. Umidade Relativa (UMIDREL): 10.61%  

6. Precipitação (PRECIP): 7.00%  
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Esta nova ordem de importância difere significativamente de análises 

iniciais, onde a Radiação Global era apontada como a variável de maior impacto 

entre as meteorológicas.  

Os resultados atuais indicam que o Mês Crítico é o fator mais crítico, o 

que é altamente consistente com o conhecimento empírico e estudos na área, 

como o de Parente et al. (2021), pois os meses de julho a outubro são 

historicamente reconhecidos como o período de maior incidência de incêndios 

na região de estudo devido às condições climáticas mais secas e quentes. A 

Figura 10, demonstra as principais variáveis influentes para previsão de 

ocorrência de incêndios. 

 

Figura 10- Gráfico das variáveis influentes para previsão de ocorrência de incêndios 
florestais na região de estudo. 

 

Fonte: Elaborado pelo autor, 2025. 

5.2.1 Radiação Global 

Os resultados da análise de importância das variáveis revelaram que a 

Radiação Global (RADGLB) se destacou como a variável meteorológica de 

maior impacto na previsão de focos de incêndios. Esta informação é consistente 

com o conhecimento de domínio empírico, uma vez que alta radiação solar 

contribui significativamente para a secagem da vegetação, aumentando sua 

suscetibilidade à ignição e propagação do fogo. A relação observada foi 
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predominantemente positiva, indicando que um aumento na radiação global está 

associado a uma maior probabilidade de ocorrência de incêndios. 

 Em um estudo focado no Cerrado, Barboza et al. (2021) utilizaram dados 

meteorológicos e aprendizado de máquina, identificando a insolação como uma 

variável de alta importância preditiva.  

De modo similar, ao prever queimadas no Pantanal, Viganó et al. (2017) 

destacaram que a radiação solar afeta o número de focos quando associada a 

condições de baixa umidade e altas temperaturas. 

O estudo de Sgorla et al. (2024) também utilizou a radiação solar diária 

média em seu modelo de ocorrência de fogo para o bioma Pampa. Outros 

trabalhos, como o de Ghorbanzadeh et al. (2019), também incluíram a radiação 

solar potencial em seus modelos de RNA para mapear a suscetibilidade a 

incêndios. 

5.2.2 Temperatura Máxima 

A Temperatura Mínima (TEMMAX) também demonstrou ser uma variável 

influente. Temperaturas elevadas podem ser indicativas de condições climáticas 

mais secas e persistentes, que favorecem a criação de um ambiente propício 

para incêndios, contribuindo para a secagem da vegetação e o aumento da 

temperatura do solo. A relação com o risco de fogo pode apresentar não-

linearidades, refletindo a complexidade das interações atmosféricas.  

Jain et al. (2020), em sua ampla revisão sobre o tema, destacam que o 

clima é um dos fatores inter-relacionados que determinam a ocorrência de um 

incêndio. Eles citam estudos específicos que utilizaram a temperatura como 

variável preditora em modelos de aprendizado de máquina.  

Luz et al. (2023), em um estudo experimental no bioma Caatinga, 

recomendam que áreas de risco sejam monitoradas com atenção, 

"principalmente em épocas que condições como a elevada temperatura do ar e 

baixa umidade favorecem à ocorrência do fogo". 

 Barboza et al. (2021). Ao preverem incêndios no Cerrado brasileiro, 

também analisaram as variáveis de temperatura máxima, média e mínima como 

entradas para seus modelos de aprendizado de máquina. 
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Sgorla et al. (2024) também incluíram a temperatura média, máxima e 

mínima como variáveis climáticas em seu estudo para modelar a ocorrência de 

fogo no bioma Pampa, no Brasil. 

 Hang et al. (2024) selecionaram a temperatura como uma das nove 

variáveis condicionantes para seu modelo de suscetibilidade a incêndios. A 

análise de interpretabilidade também apontou a temperatura como um fator 

influente. 

5.2.3 Velocidade do Vento 

A velocidade do vento (VELVENT) como esperado, mostrou uma forte 

correlação negativa com a ocorrência de incêndios. Ventos fortes são 

conhecidos por acelerar a propagação do fogo e dificultar o controle de 

incêndios, o que justifica sua relevância na predição, embora não seja o fator 

desencadeante primário.  

Viganó et al. (2017) utilizaram a "Velocidade do Vento (S)" como variável 

preditora em seu modelo de RNA para o Pantanal. Da mesma forma, Barboza et 

al. (2021) incluíram a velocidade do vento em sua análise para o Cerrado, e 

Sgorla et al. (2024) a utilizaram para modelar a ocorrência de fogo no Pampa, 

demonstrando a relevância desta variável em diferentes ecossistemas do país. 

 Jain et al. (2020), em sua revisão, citam diversos trabalhos que utilizam 

o vento como variável climática fundamental.  

Estudos como o de Bui et al. (2017) e Hang et al. (2024) incluíram a 

velocidade do vento como um fator condicionante chave em seus modelos de 

IA, ao lado de outras variáveis como temperatura e precipitação. 

5.2.4 Umidade Relativa 

 Umidade Relativa (UMIDREL) como esperado, mostrou uma moderada 

correlação negativa com a ocorrência de incêndios. Baixos níveis de umidade 

relativa do ar são diretamente associados à diminuição do teor de umidade na 

biomassa vegetal, tornando-a mais inflamável. A importância desta variável 

reforça a necessidade de monitoramento contínuo das condições de umidade 

para a gestão de riscos de incêndio.  

Viganó et al. (2017), em sua análise para o Pantanal, confirmaram que 

valores altos de umidade relativa dificultam a propagação do fogo, enquanto 
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condições de baixa umidade favorecem o aumento de focos de incêndio. Para o 

Cerrado. 

 Barboza et al. (2021) incluíram as umidades relativas máxima, média e 

mínima como variáveis preditoras importantes em seus modelos de aprendizado 

de máquina.  

No contexto específico da Caatinga, Luz et al. (2023) reforçam que o risco 

de fogo é acentuado em épocas de baixa umidade, validando a base física para 

a importância desta variável no semiárido. 

5.2.5 Precipitação  

 A Precipitação (PRECIP), embora fundamental para a redução do risco 

de fogo, apareceu com uma importância ligeiramente menor em comparação 

com outras variáveis meteorológicas. Isso pode ser atribuído à sua natureza 

intermitente e à forma como os dados foram incorporados ao modelo, ou à 

predominância de outros fatores em períodos de estiagem. Esta observação 

pode refletir a dinâmica particular dos ecossistemas sazonalmente secos, como 

a Caatinga, caracterizados por uma distribuição irregular das chuvas (Luz et al., 

2023). 

De fato, a ausência de chuva, mais do que sua quantidade absoluta, é um 

gatilho crítico, algo que Anderson et al. (2021) utilizaram em seu modelo de 

alerta, que se baseia na previsão de precipitação abaixo da média para indicar 

risco elevado. 

Hang et al. (2024), por exemplo, identificaram a precipitação anual como 

um dos fatores chave na modelagem de suscetibilidade a incêndios no Himalaia, 

enquanto Ghorbanzadeh et al. (2019) confirmaram que a baixa precipitação 

aumentou significativamente a suscetibilidade ao fogo em florestas no Irã. 

5.3 Estratégia de Simplificação do Modelo 

A estratégia para a redução de variáveis foi guiada pelo objetivo de 

simplificar o modelo sem comprometer significativamente seu desempenho, 

tornando-o mais prático para aplicações em campo. O processo envolveu as 

seguintes etapas: 

 Análise de Importância Inicial: Inicialmente, foi realizada uma análise 

de importância de todas as variáveis disponíveis no conjunto de dados completo. 
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Esta etapa permitiu identificar as variáveis com maior poder preditivo e aquelas 

com menor contribuição para o modelo. 

 Seleção de Variáveis Meteorológicas Chave: Com base na análise de 

importância e no conhecimento especializado sobre a dinâmica dos incêndios 

florestais, foram selecionadas as cinco variáveis meteorológicas mais 

relevantes: UMIDREL, TEMPMAX, RADGLB, VELVENT e PRECIP. Estas 

variáveis são amplamente reconhecidas na literatura como fatores críticos para 

a ocorrência e propagação de incêndios, conforme apontado por autores como 

Silva et al. (2023) e Rodrigues et al. (2024). 

 Criação da Variável Mês Crítico: Para capturar a forte sazonalidade dos 

incêndios, foi criada uma variável categórica binária, "MES_CRITICO", que 

indica se o mês em questão está entre julho e outubro. Este período foi 

identificado como de alta criticidade para a ocorrência de incêndios na região de 

estudo. A inclusão desta variável simplifica a representação de um fator temporal 

complexo, que de outra forma exigiria múltiplas variáveis para cada mês ou 

análises de séries temporais mais elaboradas. 

 Reavaliação do Modelo Reduzido: O modelo foi então re-treinado e 

avaliado utilizando apenas este conjunto reduzido de seis variáveis (cinco 

meteorológicas + Mês Crítico). O desempenho do modelo otimizado foi 

comparado com o modelo original (com todas as variáveis) para garantir que a 

redução não resultasse em uma perda inaceitável de acurácia. A acurácia de 

71.12% com o conjunto reduzido, comparável ao desempenho do modelo 

completo, validou a abordagem de simplificação. 

Esta abordagem de redução de variáveis não apenas manteve a 

capacidade preditiva do modelo, mas também aumentou sua interpretabilidade 

e praticidade, alinhando-o com os requisitos de uso público e governamental. A 

ênfase na simplicidade e na manutenção do desempenho é fundamental para a 

adoção e eficácia de sistemas de alerta precoce de incêndios florestais. 

5.3.1 Resultados do Modelo Simplificado  

Após a otimização e redução das variáveis de entrada, o modelo de RNA 

foi reavaliado para verificar seu desempenho com o conjunto simplificado de 5 
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variáveis meteorológicas (UMIDREL, TEMPMAX, RADGLB, VELVENT, 

PRECIP) e a variável categórica Mês Crítico (MES_CRITICO). O objetivo foi 

demonstrar que a simplificação não comprometeria a capacidade preditiva do 

modelo, tornando-o mais prático e eficiente para uso em campo. 

Os resultados da execução do script Python indicaram que o melhor 

modelo encontrado utilizou a função de ativação sigmoid com 5 neurônios na 

camada intermediária. As métricas de desempenho obtidas no conjunto de teste 

foram as seguintes:  

Acurácia no teste: 73.86%. 

Precisão no teste: 72.79%. 

Estes valores representam uma melhoria em relação aos resultados do 

modelo anterior ( tanh com 20 neurônios, acurácia de teste de 70.82% e precisão 

de teste de  67,48%), e são comparáveis à acurácia de 71.12% mencionada no 

contexto inicial para o modelo otimizado. A acurácia de 73.86% com um modelo 

mais simples e interpretabilidade aprimorada valida a estratégia de redução de 

variáveis, demonstrando que é possível manter um desempenho robusto com 

menor complexidade. A tabela 3 exibe o comparativo entre os dois modelos 

testados. 

 

Tabela 3  Comparação entre os modelos de RNA. 

 
Modelo 

Variáveis de 
entrada 

Neurônios na 
camada 
intermediária 

Função de 
ativação 

Acurácia de 
teste (%) 

Precisão de 
teste (%) 

Modelo 
Inicial 

17 20 Tangente 70,82 67,48% 

Modelo 
reduzido 

6 5 Sigmoid 73,86 72,79 

Fonte: Elaboração própria (2025). 

 

5.3.2  Matriz de Confusão 

A Matriz de Confusão é uma ferramenta visual essencial para avaliar o 

desempenho de um modelo de classificação, detalhando os acertos e erros para 

cada classe. O objetivo do modelo é prever a ocorrência de duas classes: "Fogo" 

(1) e "Sem Fogo" (0).  
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As matrizes de confusão geradas pelo script Python para os conjuntos de 

validação e teste são apresentadas na Figura 11.  

 

Figura 11  Matriz de confusão obtida durante o treinamento da rede neural 

 

Fonte: Adaptado de código Python (2025) 

 

Os valores das matrizes de confusão geradas para o modelo simplificado 

mostram um desempenho equilibrado. No conjunto de validação, o modelo 

identificou corretamente 103 eventos de "Fogo" (Verdadeiros Positivos) e 180 

eventos de "Sem Fogo" (Verdadeiros Negativos), com 44 Falsos Positivos e 56 

Falsos Negativos. 

Já no conjunto de teste, o modelo conseguiu identificar 107 eventos de 

"Fogo" corretamente (Verdadeiros Positivos) e 136 eventos de "Sem Fogo" 

corretamente (Verdadeiros Negativos). Os Falsos Positivos (40) e Falsos 

Negativos (46) indicam as áreas onde o modelo ainda pode ser aprimorado, mas 

o balanço geral demonstra uma capacidade preditiva razoável para ambas as 

classes, o que é crucial para um sistema de alerta precoce. 

 

5.3.3 Curva de Aprendizado 

 
As curvas de aprendizado e da função de perda são cruciais para 

monitorar a evolução do modelo durante o treinamento e identificar 

comportamentos como overfitting ou underfitting. A Figura 12 apresenta a 
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evolução da acurácia e função de perda para os conjuntos de validação do 

melhor modelo simplificado. 

 

 

 

Figura 12  Gráficos de Acurácia e Função de Perda durante o Treinamento 

 

Fonte: Adaptado de código Python (2025) 

As curvas de acurácia de treino e validação para o modelo simplificado ( 

sigmoid com 5 neurônios) demonstram um comportamento de aprendizado 

estável. Ambas as curvas iniciam em torno de 0.525 e convergem para valores 

próximos a 0.73-0.74. A proximidade entre as curvas de treino e validação ao 

longo das épocas indica um bom equilíbrio e a ausência de overfitting 

significativo, sugerindo que o modelo aprendeu padrões generalizáveis dos 

dados.  

Similarmente, as curvas de perda de treino e validação mostram uma 

diminuição consistente ao longo das épocas, partindo de aproximadamente 0.69 

e estabilizando em torno de 0.52-0.53. A convergência das curvas de perda e a 

ausência de divergência entre elas reforçam a estabilidade do treinamento e a 

capacidade do modelo de minimizar o erro de forma eficaz, sem sobreajustar 

aos dados de treino. 

Nesse sentido, o trabalho de Sistani e Kazemitabar (2025), que treinou 

uma rede neural convolucional para detecção de fogo em imagens, também 

reportou uma curva de aprendizado com um aumento acentuado e paralelo da 

acurácia de treino e validação nas épocas iniciais, alcançando elevados valores 
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de precisão em poucas interações. Essa fase demonstra a eficiência do 

algoritmo em aprender as relações iniciais entre as variáveis de entrada e a 

ocorrência de focos de incêndio. 

Já comportamento da função de perda durante o treinamento é um 

complemento essencial à análise da acurácia, fornecendo uma medida direta do 

erro do modelo. A literatura metodológica reforça que o objetivo central do 

treinamento de uma RNA é, precisamente, minimizar essa função de erro.  

Viganó et al. (2017), por exemplo, explicam que o algoritmo de 

backpropagation (retropropagação de erros) ajusta os pesos da rede para 

minimizar a diferença entre a saída do modelo e o valor esperado. 

De forma similar, Ghorbanzadeh et al. (2019) descrevem este processo 

como uma comparação cíclica entre a saída calculada e os valores reais, onde 

os pesos são atualizados em cada ciclo para minimizar o erro global. A 

centralidade dessa métrica é tal que o próprio processo de otimização é definido 

como a busca por uma configuração de hiperparâmetros que diminua o erro de 

validação, como apontado por Liu, Chen e Asadi (2025).  

A observação da perda para os conjuntos de treino e validação, portanto, 

permite uma compreensão mais aprofundada da convergência e do ajuste do 

modelo. 

5.3.4  Relatório de Classificação Detalhado 
 

Para uma avaliação mais aprofundada do desempenho do modelo, o 

relatório de classificação detalhado para o conjunto de teste fornece métricas 

como precisão, recall e F1-score para cada classe (Fogo e Sem Fogo). Estes 

indicadores são cruciais para entender a capacidade do modelo em identificar 

corretamente cada tipo de evento. A Tabela 4 apresenta esses resultados 

detalhados. 

Tabela 4 - Relatório de Classificação do modelo 

Classe Precision Recall F1-Score Support 

0 (Sem Fogo) 0.75 0.77 0.76 176 

1 (Fogo) 0.73 0.70 0.71 153 

Accuracy   0.74 329 

Macro Avg 0.74 0.74 0.74 329 

Weighted Avg 0.74 0.74 0.74 329 

Fonte: Elaborado pelo autor, 2025. 
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A avaliação do modelo no conjunto de teste revelou uma acurácia global 

de 74%, indicando uma performance preditiva robusta. Uma análise mais 

detalhada por classe demonstra um desempenho equilibrado. Para a classe 

"Sem Fogo" (0), o modelo apresentou uma precisão de 0.75, significando que 

75% das previsões de ausência de fogo estavam corretas, e um recall de 0.77, 

o que indica a correta identificação de 77% dos eventos reais sem fogo. O F1-

score de 0.76, sendo a média harmônica entre essas duas métricas, confirma a 

consistência do modelo para esta classe.  

No que tange à classe "Fogo" (1), de maior interesse para um sistema de 

alerta, a precisão foi de 0.73. Notavelmente, o recall atingiu 0.70, um resultado 

de grande relevância prática, pois demonstra que o sistema foi capaz de 

identificar 70% dos eventos de fogo reais, minimizando os falsos negativos, que 

representam o cenário de maior risco. O F1-score de 0.71 para esta classe 

reflete um desempenho razoável na tarefa crítica de detecção de incêndios. 

 Em síntese, as métricas equilibradas, incluindo os F1-scores médios 

(macro e ponderado) de 0.74 , indicam que o modelo possui uma capacidade 

preditiva balanceada, qualificando-se como uma ferramenta valiosa para 

otimizar a alocação de recursos e apoiar estratégias de prevenção e combate a 

incêndio. 

 5.4 Comparação de Desempenho: Modelo Completo vs. Modelo Reduzido 

Para validar a eficácia da estratégia de redução de variáveis, foi realizada 

uma comparação direta entre o desempenho do modelo completo (com todas as 

variáveis inicialmente consideradas) e o modelo otimizado com o conjunto 

reduzido de variáveis (5 meteorológicas + Mês Crítico). O objetivo foi demonstrar 

que a simplificação do modelo não resultou em uma perda significativa de 

acurácia, mas sim em um ganho de praticidade e interpretabilidade. A Tabela 5 

compara as métricas de desempenho entre o modelo completo e o modelo 

reduzido. 
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Tabela 5: Métricas de acurácia e precisão para ambos os modelos no conjunto 

de teste.  

Modelo Acurácia no Teste Precisão no Teste 

Modelo Completo 70,82% 67,48% 

Modelo Reduzido 73,86% 72,79% 

Fonte: Elaborado pelo autor, 2025. 

Conforme ilustrado na Figura 13, o modelo reduzido não apenas manteve, 

mas superou ligeiramente o desempenho do modelo completo em termos de 

acurácia e precisão no conjunto de teste. A acurácia do modelo reduzido foi de 

73.86%, enquanto a do modelo completo foi de 70.82%. Similarmente, a precisão 

do modelo reduzido foi de 72.79%, superior aos 67.48% do modelo completo. 

 

Figura 13  Comparação de desempenho entre o Modelo Completo e o Modelo 

Reduzido. 

 

Fonte: Adaptado de código Python (2025) 

Esta melhoria no desempenho com um conjunto de variáveis mais enxuto 

é um resultado notável e reforça a validade da metodologia de redução de 

variáveis. Isso sugere que as variáveis removidas no processo de otimização 

podem ter introduzido ruído ou redundância, ou que o modelo simplificado 

conseguiu capturar os padrões essenciais de forma mais eficiente. A capacidade 
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de alcançar um desempenho superior com menor complexidade é um avanço 

significativo para a aplicação prática do modelo, pois facilita a coleta de dados, 

reduz a carga computacional e aumenta a interpretabilidade, tornando-o mais 

adequado para uso por órgãos governamentais e comunidades locais na gestão 

de incêndios florestais.  

5.5 Implicações Práticas e Usabilidade do Modelo 
 

A otimização do modelo de previsão de incêndios florestais, com a 

redução do número de variáveis de entrada para um conjunto conciso de cinco 

variáveis meteorológicas e uma variável categórica para meses críticos, traz 

implicações práticas significativas e melhora substancialmente a usabilidade da 

ferramenta para diversos stakeholders. O principal objetivo desta abordagem foi 

desenvolver um modelo que não apenas apresentasse um desempenho 

preditivo robusto, mas que também fosse acessível, fácil de implementar e de 

manter em contextos operacionais reais, especialmente para órgãos 

governamentais e comunidades locais. 

5.5.1 Facilidade de Coleta e Disponibilidade de Dados 

Um dos maiores desafios na implementação de sistemas de alerta 

precoce de incêndios é a disponibilidade e a qualidade dos dados de entrada. 

Ao focar em variáveis como Umidade Relativa (UMIDREL), Temperatura Máxima 

(TEMPMAX), Radiação Global (RADGLB), Velocidade do Vento (VELVENT) e 

Precipitação (PRECIP), o modelo se baseia em dados meteorológicos que são 

amplamente coletados e disponibilizados por estações meteorológicas e 

serviços climáticos. A variável Mês Crítico (MES_CRITICO) é ainda mais 

simples, sendo derivada diretamente do calendário. Essa simplificação reduz 

drasticamente a complexidade e o custo associados à coleta e ao pré-

processamento de dados, tornando o modelo mais viável para regiões com 

infraestrutura limitada de monitoramento ambiental. 

5.5.2 Interpretabilidade e Tomada de Decisão 

A clareza sobre quais variáveis são mais influentes na previsão de 

incêndios (Mês Crítico, Radiação Global e Temperatura Máxima, por exemplo) 

permite que os gestores e formuladores de políticas compreendam melhor os 

fatores de risco e desenvolvam estratégias de prevenção mais direcionadas. Um 
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modelo com alta interpretabilidade facilita a comunicação dos riscos à população 

e a justificação de medidas preventivas, como campanhas de conscientização 

ou restrições a atividades que possam iniciar incêndios. A capacidade de explicar 

"por que" o modelo fez uma determinada previsão aumenta a confiança na 

ferramenta e promove sua adoção. 

5.5.3 Eficiência Operacional e Escalabilidade 

Com um número reduzido de variáveis, o modelo demanda menos 

recursos computacionais para treinamento e execução. Isso significa que ele 

pode ser implementado em plataformas de hardware mais modestas, como 

computadores de campo ou sistemas embarcados, o que é uma vantagem para 

operações em áreas remotas. A eficiência computacional também se traduz em 

previsões mais rápidas, permitindo que alertas sejam emitidos em tempo hábil, 

crucial para a resposta a emergências. Além disso, a simplicidade do modelo 

facilita sua escalabilidade para outras regiões ou biomas, desde que os dados 

das variáveis selecionadas estejam disponíveis. 

5.5.4 Potencial para Integração em Sistemas de Alerta Precoce 

O modelo otimizado se encaixa perfeitamente na arquitetura de sistemas 

de alerta precoce de incêndios florestais. Sua saída binária (Fogo/Sem Fogo) 

pode ser facilmente integrada a painéis de controle, aplicativos móveis ou 

sistemas de informação geográfica (SIG), fornecendo informações claras e 

acionáveis para equipes de brigadistas, defesa civil e população em geral. A alta 

acurácia (73.86%) e o bom recall para a classe "Fogo" (70%) garantem que o 

modelo seja uma ferramenta confiável para identificar situações de risco, 

minimizando falsos negativos que poderiam levar a desastres. 

5.5.5 Contribuição para a Gestão Ambiental e Políticas Públicas 

Ao oferecer uma ferramenta preditiva robusta e prática, esta pesquisa 

contribui diretamente para a gestão ambiental e o desenvolvimento de políticas 

públicas mais eficazes no combate aos incêndios florestais. A capacidade de 

prever com antecedência os períodos e as condições de alto risco permite a 

alocação estratégica de recursos, a intensificação da fiscalização em áreas 

vulneráveis e a implementação de programas de educação ambiental mais 

focados. Em última análise, o modelo otimizado serve como um valioso suporte 
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à decisão para a proteção de ecossistemas, da biodiversidade e das 

comunidades humanas afetadas por esses eventos catastróficos. 
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6 CONSIDERAÇÕES FINAIS

Este trabalho se propôs a desenvolver e otimizar um modelo RNA para a 

previsão de incêndios florestais no semiárido nordestino, com o objetivo central 

de criar uma ferramenta que fosse não apenas precisa, mas também prática e 

acessível para diversos públicos, como órgãos governamentais nas esferas 

federal, estadual e municipal, empresas de diferentes portes, organizações não-

governamentais (ONGs) e comunidades locais.  

A principal contribuição desta pesquisa reside na validação de uma 

metodologia de redução de variáveis que, contraintuitivamente, resultou em um 

modelo superior. A transição de um conjunto de dados abrangente e complexo 

para um conjunto simplificado, composto por cinco variáveis meteorológicas 

(UMIDREL, TEMPMAX, RADGLB, VELVENT, PRECIP) e uma variável 

categórica (MES_CRITICO), provou ser uma estratégia de sucesso. O modelo 

otimizado, utilizando uma função de ativação sigmoid com 5 neurônios, não 

apenas manteve a capacidade preditiva, mas superou o modelo original, 

alcançando uma acurácia de 73.86% e precisão de 72.79% no conjunto de teste, 

em comparação com os 70.82% de acurácia do modelo completo. Este resultado 

notável sugere que a remoção de variáveis menos relevantes reduziu ruídos e 

redundâncias, permitindo que o modelo capturasse os padrões essenciais de 

forma mais eficiente. 

A análise de importância das variáveis corroborou o conhecimento empírico 

ao identificar o "Mês Crítico" (julho a outubro) como o fator de maior influência 

para a ocorrência de fogo, com 27.91% de importância relativa. Variáveis como 

Radiação Global e Temperatura Máxima também se mostraram altamente 

relevantes. A análise das curvas de aprendizado e de perda confirmou a 

estabilidade do modelo, que demonstrou um treinamento equilibrado e sem 

overfitting significativo, indicando sua capacidade de generalizar padrões a partir 

dos dados.  

Do ponto de vista prático, a simplificação do modelo tem implicações 

profundas. A dependência de um número menor de variáveis meteorológicas, 

que são amplamente coletadas, reduz drasticamente a complexidade e os 

custos associados à coleta e ao processamento de dados. A eficiência 

computacional aprimorada permite a implementação em hardware mais modesto 
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e a geração de alertas mais rápidos, um fator crucial para a resposta a 

emergências. Além disso, a alta interpretabilidade facilita a tomada de decisão, 

aumenta a confiança na ferramenta e permite o desenvolvimento de estratégias 

de prevenção mais direcionadas. 

O modelo demonstrou um desempenho equilibrado na distinção entre as 

classes "Fogo" e "Sem Fogo". O recall de 70% para a classe "Fogo" é 

particularmente encorajador, pois indica que o sistema é capaz de identificar uma 

parcela significativa dos incêndios reais, minimizando falsos negativos que 

poderiam levar a desastres. 

Em suma, este estudo conclui que é viável desenvolver um sistema de 

alerta precoce de incêndios florestais que equilibra com sucesso acurácia e 

praticidade. A pesquisa não apenas entrega um modelo preditivo robusto e 

validado, mas também reforça que, em modelagem preditiva, a complexidade 

nem sempre é sinônimo de melhor desempenho. O modelo otimizado se 

apresenta como uma ferramenta de grande valor para a gestão ambiental e o 

desenvolvimento de políticas públicas, oferecendo um suporte à decisão ágil e 

confiável para a proteção dos ecossistemas, da biodiversidade e das 

comunidades do semiárido nordestino contra os impactos devastadores dos 

incêndios florestais. 
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APÊNDICE A - CÓDIGO DO ALGORITMO DA REDE NEURAL FINAL

 import pandas as pd  
import numpy as np  
from sklearn.model_selection import train_test_split  
from sklearn.preprocessing import StandardScaler  
from sklearn.impute import SimpleImputer  
from sklearn.metrics import confusion_matrix, classification_report, 
accuracy_score, precision_score  
import tensorflow as tf  
from tensorflow.keras.models import Sequential  
from tensorflow.keras.layers import Dense  
import matplotlib.pyplot as plt  
import seaborn as sns  
import os  

# Criar diretório para salvar gráficos  
if not os.path.exists("graphs_reduced_features"):  

os.makedirs("graphs_reduced_features")  

# Carregar os dados  
df = pd.read_csv("DadosFelipeFinal.csv", parse_dates=["DATA"])  

# Criar a variável MES_CRITICO (Julho, Agosto, Setembro, Outubro) 
df["MES_CRITICO"] = df["DATA"].dt.month.isin([7, 8, 9, 10]).astype(int)  

# Selecionar as 5 variáveis meteorológicas e a nova variável MES_CRITICO 
selected_features = ["RADGLB", "UMIDREL", "TEMPMAX", "PRECIP", "VELVENT", 
"MES_CRITICO", "FOGO"]  
df_filtered = df[selected_features].copy()  

# Verificar valores nulos e preencher com média  
imputer = SimpleImputer(strategy="mean")  
df_imputed = pd.DataFrame(imputer.fit_transform(df_filtered.drop("FOGO", axis=1)),  
columns=df_filtered.drop("FOGO", axis=1).columns)  

# Separar features e target  
X = df_imputed  
y = df_filtered["FOGO"]  

# Divisão dos dados: 70% teste, 15% treino, 15% validação X_temp, X_test, 
y_temp, y_test = train_test_split(X, y, test_size=0.3, random_state=42)  
X_train, X_val, y_train, y_val = train_test_split(X_temp, y_temp, 
test_size=0.5,  
random_state=42)  

# Padronização dos dados  
scaler = StandardScaler()  
X_train_scaled = scaler.fit_transform(X_train)  
X_val_scaled = scaler.transform(X_val)  
X_test_scaled = scaler.transform(X_test)  

# Parâmetros para testar  
activations = ["relu", "sigmoid", "tanh"]  
neurons_list = [5, 10, 15, 20]  
results = [] 
# Loop sobre diferentes configurações  
for activation in activations:  

for neurons in neurons_list:  
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model = Sequential([  
Dense(neurons, activation=activation, input_shape=  

(X_train.shape[1],)),  
Dense(1, activation="sigmoid")  

])  
model.compile(optimizer="adam", loss="binary_crossentropy", metrics= 

["accuracy"])  

# Treinar o modelo  
history = model.fit(X_train_scaled, y_train,  

validation_data=(X_val_scaled, y_val),  
epochs=50, verbose=0, batch_size=32)  

# Avaliar no conjunto de validação  
val_loss, val_acc = model.evaluate(X_val_scaled, y_val, verbose=0) 
y_val_pred = (model.predict(X_val_scaled) > 0.5).astype(int)  
val_precision = precision_score(y_val, y_val_pred)  

# Avaliar no conjunto de treino para verificar overfitting  
train_acc = history.history["accuracy"][-1]  
results.append({  

"activation": activation,  
"neurons": neurons,  
"val_accuracy": val_acc,  
"val_precision": val_precision,  
"train_accuracy": train_acc,  
"history": history,  
"model": model  

})  

# Gerar gráficos de acurácia e loss para cada modelo testado  
plt.figure(figsize=(10, 4))  
plt.subplot(1, 2, 1)  
plt.plot(history.history["accuracy"], label="Treino")  
plt.plot(history.history["val_accuracy"], label="Validação")  
plt.title(f"Acurácia ({activation}, {neurons} neurônios)")  
plt.legend()  

plt.subplot(1, 2, 2)  
plt.plot(history.history["loss"], label="Treino")  
plt.plot(history.history["val_loss"], label="Validação")  
plt.title(f"Loss ({activation}, {neurons} neurônios)")  
plt.legend()  
plt.tight_layout()  

plt.savefig(f"graphs_reduced_features/performance_{activation}_{neurons}_neurons. plt.close()  

# Encontrar melhor modelo com base na acurácia de validação  
best_result = max(results, key=lambda x: x["val_accuracy"])  
print(f"Melhor modelo: {best_result["activation"]} com {best_result["neurons"]} neurônios")  
print(f"Acurácia validação: {best_result["val_accuracy"]:.4f}") 
print(f"Precisão validação: {best_result["val_precision"]:.4f}")  

# Treinar melhor modelo com todos os dados de treino+validação 
X_final_train = np.vstack([X_train_scaled, X_val_scaled])  
y_final_train = np.hstack([y_train, y_val]) 
best_model = Sequential([  

Dense(best_result["neurons"], activation=best_result["activation"], 
input_shape=(X_train.shape[1],)),  
Dense(1, activation="sigmoid")  

])  
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best_model.compile(optimizer="adam", loss="binary_crossentropy", metrics= 
["accuracy"])  
best_model.fit(X_final_train, y_final_train, epochs=50, verbose=0, 
batch_size=32)  

# Avaliar no conjunto de teste  
test_loss, test_acc = best_model.evaluate(X_test_scaled, y_test, verbose=0) y_test_pred 
= (best_model.predict(X_test_scaled) > 0.5).astype(int) test_precision = 
precision_score(y_test, y_test_pred)  
print(f"\nDesempenho no conjunto de teste:")  
print(f"Acurácia: {test_acc:.4f}")  
print(f"Precisão: {test_precision:.4f}")  

# Matriz de confusão para validação  
y_val_pred_best = (best_result["model"].predict(X_val_scaled) > 
0.5).astype(int)  
cm_val = confusion_matrix(y_val, y_val_pred_best)  
plt.figure(figsize=(8, 6))  
sns.heatmap(cm_val, annot=True, fmt="d", cmap="Blues")  
plt.title("Matriz de Confusão - Validação")  
plt.ylabel("Verdadeiro")  
plt.xlabel("Predito")  
plt.savefig("graphs_reduced_features/confusion_matrix_validation.png") # Salvar a imagem  
plt.close()  

# Matriz de confusão para teste  
cm_test = confusion_matrix(y_test, y_test_pred)  
plt.figure(figsize=(8, 6))  
sns.heatmap(cm_test, annot=True, fmt="d", cmap="Blues")  
plt.title("Matriz de Confusão - Teste")  
plt.ylabel("Verdadeiro")  
plt.xlabel("Predito")  
plt.tight_layout()  
plt.savefig("graphs_reduced_features/confusion_matrix_test.png") # Salvar a imagem  
plt.close()  

# Gráficos de desempenho do melhor modelo  
plt.figure(figsize=(12, 4))  
plt.subplot(1, 2, 1)  
plt.plot(best_result["history"].history["accuracy"], label="Treino") 
plt.plot(best_result["history"].history["val_accuracy"], label="Validação") plt.title("Acurácia 
durante o Treinamento")  
plt.legend()  

plt.subplot(1, 2, 2)  
plt.plot(best_result["history"].history["loss"], label="Treino") 
plt.plot(best_result["history"].history["val_loss"], label="Validação") plt.title("Loss 
durante o Treinamento")  
plt.legend()  
plt.tight_layout()  
plt.savefig("graphs_reduced_features/performance_best_model.png") # Salvar a imagem 
do melhor modelo  
plt.close() 
# Verificar overfitting/underfitting  

if best_result["train_accuracy"] > best_result["val_accuracy"] + 0.1: print("Possível 
overfitting detectado")  
elif best_result["val_accuracy"] < 0.6:  

print("Possível underfitting detectado")  
else:  

print("Modelo com bom equilíbrio entre treino e validação")  
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# Relatório de classificação detalhado  
print("\nRelatório de Classificação (Teste):")  
classification_report_str = classification_report(y_test, y_test_pred, 
output_dict=True)  
print(classification_report(y_test, y_test_pred))  

#########################################  
##Importância das Variáveis  

# Criar e treinar o modelo para importância das variáveis (usando a mesma 
configuração do melhor modelo)  
model_importance = Sequential([  

Dense(best_result["neurons"], activation=best_result["activation"], 
input_shape=(X_train.shape[1],)),  

Dense(1, activation="sigmoid")  
])  
model_importance.compile(optimizer="adam", loss="binary_crossentropy", metrics= 
["accuracy"])  
model_importance.fit(X_train_scaled, y_train, validation_data=(X_val_scaled, y_val),  
epochs=50, verbose=0, batch_size=32)  

# Calcular a importância das variáveis  
weights = model_importance.layers[0].get_weights()[0] # Pesos da primeira camada  
importance = np.mean(np.abs(weights), axis=1) # Média absoluta dos pesos por feature  

# Normalizar a importância para percentuais  
importance = 100 * importance / np.sum(importance)  

# Criar DataFrame com as importâncias  
feature_importance = pd.DataFrame({  

"Feature": X.columns,  
"Importance": importance  

}).sort_values("Importance", ascending=True)  

# Plotar o gráfico de importância  
plt.figure(figsize=(10, 6))  
plt.barh(feature_importance["Feature"], feature_importance["Importance"], 
color="skyblue")  
plt.xlabel("Importância Relativa (%)")  
plt.title("Importância das Variáveis no Modelo de Previsão de Incêndios (Features 
Reduzidas)")  
plt.grid(axis="x", alpha=0.3)  
# Adicionar valores percentuais nas barras  
for i, v in enumerate(feature_importance["Importance"]):  

plt.text(v + 0.5, i, f"{v:.1f}%", va="center")  
plt.tight_layout()  
plt.savefig("graphs_reduced_features/feature_importance_plot_reduced_features.png # Salvar a 
imagem  
plt.close()  

# Exibir a importância em forma de tabela 
print("\nImportância das Variáveis (Features Reduzidas):")  
print(feature_importance.sort_values("Importance", ascending=False))  

# Gráficos de dispersão para TODAS as variáveis importantes  
all_important_features = feature_importance["Feature"].tolist()  

for feature in all_important_features:  
plt.figure(figsize=(10, 6))  
sns.scatterplot(x=df_imputed[feature], y=y, hue=y, palette="viridis", alpha=0.6)  
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plt.title(f"Dispersão de {feature} vs. Ocorrência de Fogo (Features 
Reduzidas)")  

plt.xlabel(feature)  
plt.ylabel("FOGO (0=Não Fogo, 1=Fogo)")  
plt.yticks([0, 1], ["Não Fogo", "Fogo"])  

plt.savefig(f"graphs_reduced_features/scatter_{feature}_vs_FOGO_reduced_features. plt.close()  

# Salvar o relatório de classificação em um arquivo para fácil acesso with  
open("graphs_reduced_features/classification_report_test_reduced_features.txt", "w") as f:  

f.write(classification_report(y_test, y_test_pred)) 
 


