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RESUMO

Os incéndios florestais representam uma grave ameaca ao equilibrio ecolégico
e socioecondmico, especialmente no semiarido nordestino, uma regiao
caracterizada por longos periodos de estiagem e vegetacao suscetivel ao fogo.
A capacidade de prever a ocorréncia de focos de incéndio &, portanto, uma
ferramenta essencial para o planejamento de ac¢des de mitigacdo e resposta
rapida. Este trabalho teve como objetivo principal desenvolver um modelo
preditivo para focos de incéndios florestais na regido do Sertdo de Crateus,
Ceara, utilizando Redes Neurais Artificiais (RNA). Para isso, foram coletados
dados de focos de calor de satélites (MODIS e VIIRS) e variaveis meteorolégicas
(temperatura, radiagcdo solar, umidade, precipitacdo, vento e pressao
atmosférica) do INMET, abrangendo o periodo de 2019 a 2024. A metodologia
envolveu o processamento e a integracao desses dados para treinar, validar e
testar uma RNA do tipo Multi-Layer Perceptron (MLP). A analise de importancia
das variaveis, realizada por permutacao de features, e a radiagao solar global
(RADGLB) foram os fatores de maior impacto na predicdo. O modelo final
alcangou uma acuracia global de 72% nos dados de teste, com uma
sensibilidade de 77%, indicando alta capacidade para identificar corretamente a
ocorréncia real de fogo. A analise das curvas de aprendizado demonstrou uma
convergéncia estavel com overfitting controlado. Os resultados indicam que a
modelagem com RNA é uma abordagem promissora e eficaz para prever focos
de incéndio, fornecendo uma base sélida para o desenvolvimento de sistemas
de alerta precoce e auxiliando na gestao de recursos para o combate a incéndios

no semiarido.

Palavras-chave: incéndios florestais; redes neurais artificiais; predicao;

semiarido; sensoriamento remoto.



ABSTRACT

Forest fires pose a serious threat to the ecological and socioeconomic balance,
especially in the northeastern semiarid region of Brazil, an area characterized by
long dry seasons and fire-susceptible vegetation. The ability to predict the
occurrence of fire hotspots is, therefore, an essential tool for planning mitigation
actions and rapid response. This study aimed to develop a predictive model for
forest fire hotspots in the Sertdo de Crateus region, Ceard, using Artificial Neural
Networks (ANN). For this purpose, data on fire hotspots from satellites (MODIS
and VIIRS) and meteorological variables (temperature, solar radiation, humidity,
precipitation, wind, and atmospheric pressure) from INMET were collected,
covering the period from 2019 to 2024. The methodology involved processing
and integrating these data to train, validate, and test a Multi-Layer Perceptron
(MLP) type ANN. The analysis of variable importance, carried out using feature
permutation, revealed that maximum atmospheric pressure (PATMAX) and
global solar radiation (RADGLB) were the factors with the greatest impact on the
prediction. The final model achieved an overall accuracy of 72% on the test data,
with a sensitivity of 77%, indicating a high capacity to correctly identify actual fire
occurrences. The analysis of the learning curves demonstrated stable
convergence with controlled overfitting. The results indicate that ANN modeling
is a promising and effective approach for predicting fire hotspots, providing a solid
basis for the development of early warning systems and assisting in resource

management for firefighting in the semiarid region.

Keywords: forest fires; artificial neural networks; prediction; semiarid; remote

sensing.
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1 INTRODUGAO

As florestas desempenham um papel crucial na preservagao do equilibrio
ecologico do planeta. Fatores naturais e humanos podem causar incéndios, e
estes incéndios representam uma ameacga significativa aos valiosos recursos
naturais.

Os incéndios florestais sao definidos como toda e qualquer energia
derivada da combinagdo entre combustivel, comburente e calor, capaz de
consumir vegetacdes vivas ou mortas. Esses incéndios, podem iniciar-se de
forma espontanea ou ser consequéncia de a¢gdes humanas, por conseguinte, é
iminente a probabilidade de ocorréncias de incéndios florestais em todo territorio
brasileiro, principalmente na queima de biomassa vegetal.

A intensificagdo da queima de biomassa, comum em diversas culturas
agricolas, acarreta graves prejuizos ecoldgicos, econémicos e paisagisticos.
Essa pratica afeta diretamente os biomas brasileiros, cuja maioria apresenta
algum grau de vulnerabilidade ao fogo. Entre eles, o bioma Caatinga se destaca
como uma das areas mais susceptiveis a grandes incéndios (Jesus et al., 2020).

Além da destruicdo em massa de diferentes ecossistemas, das alteracdes
climaticas, das perdas ambientais, econémicas e sociais, os incéndios florestais
também sao responsaveis pela emissao de quantidades significativas de gases
poluentes (Fiedler et al., 2023). A queima de biomassa constitui uma das maiores
fontes de aerossois carbonaceos (carbono organico; carbono elementar;
carbono negro) e gases residuais na atmosfera global (Vadrevu et al., 2015; de
Saetal., 2019; Kalita et al., 2020; Heinold et al., 2022), contribuindo com cerca
de 42% e 74% das emissdes de aerossodis carbonaceos e gases residuais,
respectivamente (Bond et al., 2013; Zhu et al., 2022). Ademais, os aerossois
provenientes dos incéndios florestais podem impactar negativamente o clima
regional através da atenuagdo da radiagdo solar e da modificagdo das
propriedades atmosféricas (Jiang et al., 2020; Yang et al., 2022; Dumka et al.,
2022; Zhu et al., 2022; Zhu et al., 2022).

No Brasil, foram determinados indicadores da qualidade do ar,
representados pelos principais gases poluentes, sendo eles: particulas inalaveis,

dioxido de enxofre, didéxido de nitrogénio, mondéxido de carbono e ozbnio
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(INSTITUTO ESTADUAL DO AMBIENTE; GERENCIA DE QUALIDADE DO AR,
2016).

A execucao de previsdes sobre focos de queimadas e incéndios, é uma
atividade complexa, que depende de um conjunto de informacdes de satélites,
analise de dados histéricos, de estudos sobre a vegetagdo, composi¢cao do solo
e de diversas outras variaveis ambientais. Outrossim, dados precisos sobre as
variaveis ambientais, podem ser obtidos através do sensoriamento remoto,
aliado aos sistemas de informagdes geograficas, as técnicas de inteligéncia
artificial e estatistica aplicada, favorecendo as tomadas de decis&o na previsao.

Nessa conjuntura, a previsao de focos de incéndios utilizando inteligéncia
artificial amplia significativamente a obtencdo de dados em locais que
periodicamente apresentam comprometimento dos biomas e piora da qualidade
do ar.

Neste contexto, com a crescente frequéncia e gravidade dos incéndios
florestais em todo o mundo, praticas eficazes de gestdo de incéndios que
integrem tecnologias inteligentes sdo cruciais para mitigar os impactos dos
incéndios florestais.

Este trabalho propbe a predicdo de focos de incéndios em areas
susceptiveis a queimadas, através da aplicagdo da metodologia de Redes
Neurais Artificiais(RNAS).
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2 OBJETIVOS

O presente trabalho tem como objetivo utilizar RNAs para prever focos de
incéndio, visando auxiliar tanto na identificagdo de areas de risco quanto na
aplicagao de possiveis medidas preventivas.

Objetivos Especificos

Para a consolidagdo do objetivo geral, faz-se necessario realizar os
seguintes objetivos especificos, como etapas pertinentes ao estudo:
e |dentificar e analisar as variaveis climaticas que contribuem para o aumento
do risco de incéndios no cenario em estudo;
e Desenvolver e adaptar uma rede neural artificial (RNA) e validar o modelo;
e Avaliar o desempenho do modelo de RNA para classificar a ocorréncia de

focos de incéndio, validando sua eficacia preditiva.



17

3 FUNDAMENTAGAO TEORICA
3.1 Incéndio Florestal

Incéndio € uma ocorréncia de fogo néo controlado, e pode ser
extremamente perigoso para os seres vivos e estruturas. Considera-se como
incéndios florestais a ocorréncia do fogo em vegetagdao, sem controle e com
potencial destrutivo, cuja incidéncia advém de causas naturais ou antropicas,
sendo estas ultimas apontadas em muitas pesquisas como a principal origem
dessas queimadas (Ramalho et al., 2021; Silva, 2017).

Durante muitos anos o tridngulo do fogo (combustivel, comburente e calor
ou energia térmica) foi utilizado para ensinar os componentes do fogo (Quadro
1). Porém, se nao houver condi¢des ideais, ou seja, a presenga simultanea e
proporcional dos trés componentes, nao havera sustentabilidade do fogo. Por
isso, foi acrescentado ao tridngulo do fogo (Figura 1) uma quarta face,
denominada reagdo em cadeia, que interliga todos os elementos promovendo a
existéncia e a continuidade do fogo (Corpo de Bombeiro Militar de Santa
Catarina, 2018).

Quadro 1 - Descricao dos componentes do fogo.

Componente Denominagao

Combustao Acéo exotérmica de uma substancia combustivel com um oxidante,
usualmente acompanhada por chamas e/ou abrasamento e/ou

emissao de fumaga.

Fogo processo de combustdo caracterizado pela emissdo de calor

acompanhado por fumaga, chama ou ambos.

Combustivel Fornece energia para a queima, representado por elementos
susceptiveis a entrar em combustao como: madeira, papel, pano,

estopa, entre outros.

Comburente Substancia que reage quimicamente com o combustivel e inicia a

combustdo, sendo o principal comburente o oxigénio.

Fonte de calor Necessario para iniciar a reagéo, pode ser desde luz solar, faiscas

de raios atmosféricos a pontas de cigarro.

Fonte: International Organization for Standardization (ISO)
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Figura 1 — Triade do fogo e Tetraedro do fogo

combustivel comburente

reacao
quimica
em cadela

calor

Fonte: gestaodesegurancaprivada.com.br (2021)

Os incéndios desempenham um papel importante na regulagdo do clima
regional e global, perturbando os processos meteoroldgicos, biogeoquimicos e
hidrolégicos (Zou et al., 2019). Outro agravante esta associado as questdes
culturais de uso da terra, como por exemplo, a pratica de queimadas para manejo
da pastagem e preparo do solo para plantio de culturas agricolas. O fogo também
€ usado para manejo da pecuaria, em savanas e campos haturais, para remogao
do excesso de biomassa e estimulo da rebrota (Pivello et al., 2021). De acordo
com o relatorio descrito pela Food and Agriculture Organization of the United
Nations - FAO (2006), sobre incéndios na América do Sul em até 90% dos
incéndios florestais sdo causados por atividades humanas.

No Brasil, conforme Oliveira Junior et al. (2017), os numeros de focos
desses incéndios e de queimadas aumentaram significativamente nos ultimos
vinte anos, ocasionando consideravel interesse por eventos que dizem respeito
ao tema. Nessa perspectiva, conforme os dados do Instituto Nacional de
Pesquisas Espaciais (INPE), no ano de 2019 houve crescimento de 48% no total
de focos de incéndios no Brasil em relagdo ao ano anterior, enquanto em 2020
ocorreu elevagao de 12% em comparagao com 2019.

Um relatério recente do Banco Mundial identificou que o Brasil esta entre
0s quatro paises do mundo que mais utilizam o fogo para a queima de residuos
agricolas. Estudos também indicam que existe uma forte relagdo entre anos de
secas extremas e impactos na saude devido a ocorréncia de queimadas e

incéndios florestais, como em anos de El Nifio (Cassou, 2018)
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Um outro fator importante sobre Incéndios Florestais, versa sobre os
impactos econdmicos, um estudo realizado por Silva (2022), apontou os
recursos gastos pelas instituicdes: Corpo de Bombeiros, Exército, Nucleo de
Operagdes e Transporte Aéreo e o ICMbio, resultando num gasto operacional
total de R$ 358.438,97, com recursos empregados em 21 dias de combate aos
incéndios.

Os incéndios naturais e antropogénicos desempenham um papel
fundamental no ciclo do carbono terrestre, e sdo uma importante fonte de
emissdes na atmosfera de gases do efeito de estufa, como o mondxido de
carbono, aerossois carbonaceos e uma série de outros gases e particulas
(Adame et al., 2018; Akagi et al., 2011; Miranda et al., 2008; Van Der Werf et al.,
2010).

3.1.1 Agentes Causadores de Incéndios

Segundo a Organizagdo das Nagbdes Unidas para Agricultura e a

Alimentacéao - FAO (2006), as principais causas dos incéndios florestais sao:

e Raios: causados diretamente por diversas descargas elétricas da atmosfera.
Nao existe responsabilidade humana.

e Incendiarios: provocados potencialmente por pessoas em propriedades
alheias, seja por vinganga ou por desequilibrio mental.

e Queima para limpeza: originados do uso do fogo na limpeza do terreno para
fins agricolas, florestais ou pecuarios, que por negligéncia ou descuido
escapam do controle e atingem areas florestais.

e Fumantes: provocados por fésforo ou por cigarros acesos.

e Operacdes florestais: provocados por trabalhadores florestais em atividades
na floresta.

e Fogos de recreagdo: incéndios causados por pessoas que utilizam a floresta
como local de recreacao.

e Estradas de ferro: incéndios causados diretamente ou indiretamente pelas
atividades de ferrovias.

e Diversos: incéndios com causa pouco frequente ou regionais n&o sao
enquadrados em uma classificacao especial. Ex.: queda de avides, incéndio

de automoveis ou baldes em festas juninas.
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Parques et al., (2018) investigaram as principais causas de incéndios de
alta gravidade em ecorregides florestais da regido oeste dos Estados Unidos
entre 2002 e 2015, descobrindo que o combustivel vivo foi o principal fator
(53,1%) na causa desses incéndios, seguido pelo clima de incéndio (22,9%). A
topografia (10,3%) e o clima (13,7%) tiveram impacto menor.

Os fatores associados as mudancgas climaticas, como a diminuicdo da
precipitacdo, o aumento das temperaturas e os periodos prolongados de seca,
juntamente com os efeitos prejudiciais das atividades humanas, exacerbaram o
risco de incéndios florestais em varias areas (Tien Bui et al., 2018).

Bhatt et al., (2023) citam como principais elementos influenciadores de
incéndios florestais os fatores topograficos como elevagao, aspecto e declive,
variaveis climaticas como precipitacdo anual, velocidade do vento, indice de
seca, temperatura e evapotranspiragdo, e um por ultimo antropogénicos,
nomeadamente a distancia as estradas. Os incéndios florestais, especialmente
os de grandes proporgoes, sao o produto de dois fatores-chave que interagem
entre si: suprimento de combustivel e padrées climaticos. Nos ultimos anos,
foram feitos esforgos significativos para estudar os regimes de incéndio
histdricos e atuais e avaliar a importancia dos principais fatores nesses regimes.

E notavel a existéncia de uma relagdo potencial entre variaveis
meteorolégicas e incéndios florestais (ToSiy et al., 2019) aplicaram fatores
meteorolégicos para construir um indice de incéndios para avaliar a gravidade
dos incéndios florestais na Sérvia. Ja, Masinda et al., (2022) utilizaram os
indicadores meteorologicos internacionais para avaliar a natureza selvagem das
florestas no Nordeste da China.

Estudos realizados (Butler et al., 2020; Moon et al., 2019), demostraram
que a velocidade do vento numa diregao favoravel contribuira para a propagagéao
do incéndio. Nelson et al., (2002) estudaram os efeitos de diferentes velocidades
do vento em modelos de propagacéao florestal, e a temperatura da superficie
terrestre, a precipitacao e a velocidade média do vento foram identificadas como
indicadores secundarios para analise posterior.

Adicionalmente, em um relatério oficial da Sérvia mostrou que as
alteracdes na temperatura da superficie terrestre e na precipitacdo foram fatores

importantes no comportamento do fogo florestal (Zivanoviy et al., 2020).
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Por essa razao, o desafio tanto da prevencdo quanto da supressao é
antecipar e reduzir o potencial de propagacgado de grandes incéndios florestais,
assim como o risco subsequente para vidas humanas, propriedades e sistemas
de uso do solo (Tyndall, 2023).

3.1.2 Incéndios no Bioma Caatinga

O bioma Caatinga compde uma regidao de rica biodiversidade, que a
caracteriza como o semiarido mais biodiverso do mundo (SEYFFARTH;
RODRIGUES, 2017). Esse bioma, tem seu dominio estendido por cerca de
912.529 km?, o que corresponde aproximadamente a 11% do territério nacional,
presente em 10 estados brasileiros: Alagoas, Bahia, Ceara, Maranhao, Minas
Gerais, Paraiba, Pernambuco, Piaui, Rio Grande do Norte e Sergipe.

O bioma Caatinga é caracterizado por uma floresta sazonal seca com uma
longa estagédo de estiagem e temperaturas médias elevadas, condigbes que o
tornam naturalmente suscetivel ao fogo (SOUZA et al., 2017). Embora a
vulnerabilidade natural exista, sdo as atividades antrépicas as principais
responsaveis pelos focos de incéndio, com registros associados a queimas para
limpeza de pastagens, eliminagdo de restos vegetais e outras praticas que
influem diretamente na propagacao do fogo (Alvez et al., 2021).

Essa pressdo humana tem alterado o regime histérico do bioma. Conforme
indicam estudos de longo prazo de Alencar et al. (2022), a Caatinga tem
registrado uma concentracdo de incéndios na estagdo seca, entre julho e
outubro. Portanto, a combinag&o das caracteristicas fisiologicas e biogeograficas
com as fontes de ignicdo humanas torna a Caatinga um ambiente propenso a
incéndios, o que justifica a urgéncia no desenvolvimento de modelos preditivos,
como o proposto neste trabalho, para o monitoramento do risco.

Silva (2021), observou que em todo o bioma Caatinga, os estados que
apresentaram estatisticamente o maior numero médio de ocorréncia de fogo
para os anos estudados foram o Piaui (3592,5), a Bahia (1491,89) e o estado do
Ceara (838,56). Para os demais estados nado foram observadas diferengas
estatisticas entre si. As maiores areas meédias queimadas foram registradas no
estado do Piaui (65,20 ha), seguido do estado da Bahia (55,71 ha) e Minas
Gerais (54,11 ha). Em contrapartida, o estado de Sergipe (31,05 ha) e Alagoas

(31,63ha) apresentaram as menores meédias de area queimada.
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3.1.3 Exposicao de Poluentes Oriundos de Incéndios

Os impactos de poluentes atmosféricos na saude ja sdo conhecidos, e
afetam principalmente as populagdes vulneraveis, como criangas, mulheres
gravidas e idosos, e tem sido associada a mortalidade por todas as causas,
principalmente por problemas cardiovasculares e respiratérios (Chen e Hoek,
2020; Hvidtfeldt. et al, 2019).

Varios estudos tém relatado o impacto na saude da exposicdo de curta
duracéo, a particulas em suspensdo com um diametro inferior a 2,5 micrometros
(PM 2,5) emitidas pelos incéndios, influenciando na mortalidade, em prejuizos
cardiorrespiratorios e em internamentos hospitalares.

Wettstein et al. (2018) descreveram uma associagao entre visitas aos
hospitais devido a doengas cardiovasculares, cerebrovasculares e respiratérias
e a densidade de fumaca de incéndios florestais na Califérnia, enquanto,
Arriagada et al. (2020) estimaram o numero de hospitalizagdes relacionadas a
doencas cardiovasculares e respiratérias, mortes e atendimento hospitalar
relacionadas a asma, relacionadas a exposicao de curto prazo ao PM2,5, devido
a fumaca de incéndios florestais na Australia.

Jones et al. (2020) analisaram a associagao entre exposi¢dao ao PM devido
a incéndios florestais e parada cardiaca extra-hospitalar na California (EUA).
Stowell et al. (2019) estimaram a ligagédo entre a exposi¢cédo de curto prazo ao
PM2,5 e eventos cardiorrespiratorios agudos no Colorado, usando um modelo
de exposicdo que relaciona visitas ao departamento de emergéncia e
hospitalizagdes por casos de doengas cardio respiratéria aguda.

Ravi et al. (2019) usaram o Programa de Mapeamento e Analise de
Beneficios Ambientais para calcular a mortalidade adicional por todas as causas
causada pela exposi¢cao a PM2,5 em incéndios prescritos na regiao noroeste do
Pacifico dos Estados Unidos, estimando que apenas os incéndios prescritos
causaram 280 a 700 mortes adicionais.

Huang et al. (2019) quantificaram o impacto dos fogos prescritos na saude
humana, na Gedrgia (EUA) durante as épocas de incéndios de 2015-2018,
através dos atendimentos de urgéncia relacionadas com a asma, estimando um

aumento no numero de urgéncias por asma devido aos impactos dos incéndios.
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Shi et al. (2019) avaliaram o impacto na qualidade do ar dos incéndios
florestais ocorridos em dezembro de 2017 no sul da Califérnia, utilizando o
modelo Weather Research and Forecasting with Chemistry, combinado com
observacbes de satélite e de superficie. Os resultados mostraram que as
concentragbes de PM2,5 aumentaram significativamente, ultrapassando os
limites de qualidade do ar dos EUA, indicando que este incéndio contribuiu para
a exposicao aguda e cumulativa de PM2,5 nesta regido, o que pode causar morte
prematura e efeitos cardiovasculares na populagao exposta (Shi et al., 2019).

Zhang et al. (2023) também avaliaram o efeito da exposicdo a PM2,5
relacionada a incéndios florestais, mas em mulheres gravidas, indicando um
aumento no numero de nascimentos prematuros ou baixo peso ao nascer. Em
Portugal (Esteves et al., 2021; Miranda et al., 2012; Oliveira et al., 2016, 2020).
Oliveira e cols. (2020) estimaram o impacto da exposi¢cdo de curto prazo ao
PM10 nos sintomas asmaticos em criangas asmaticas, e ao PM2,5 no numero
de internacbes hospitalares por doencas cardiovasculares, bem como na
mortalidade em adultos (todas causas naturais), mostrando um aumento durante
esses episodios.

Os padrbes de qualidade do ar adotados na legislagdo brasileira, séo
estabelecidos na resolugcdo n°® 03 do Conselho Nacional de Meio Ambiente —
Conama (1990), que estabelece limites aceitaveis apenas para o PM10 que é de
60 um.m para a média diaria. Embora seja de fundamental importancia para a
avaliagdo de impactos da poluicdo atmosférica por queimadas na saude
humana, poucos estudos tém investigado diretamente os efeitos do PM2,5 na

saude humana.

3.2 Predicao e Monitoramento de Incéndios

O Instituto Nacional de Pesquisas Espaciais (INPE) tem, desde a década
de 80, aprimorado seu sistema de deteccdo de queimadas no Brasil, com foco
na Amazénia a partir de 1998. Essa atividade se alinha aos objetivos do instituto
de desenvolver tecnologias e produtos de utilidade social, como monitorar focos
de incéndio via satélite, prever riscos de queima da vegetagdo e estimar
emissdes. Segundo o proprio INPE (2023), o monitoramento por imagens de

satélite é, desse modo, particularmente util para regides remotas sem outros
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meios de acompanhamento, situacdo comum em grande parte do territorio
nacional.

Os focos de queimadas passaram as ser obtidos por imagens dos satélites
NOAA (National Oceanic and Atmospheric Administration) quatro vezes ao dia e
mais recentemente também nas imagens do GOES-Leste (Geostationary
Operational Environmental Satellite) oito ou mais vezes ao dia, e TERRA e
AQUA duas vezes por dia cada, sendo em seguida integrados a dois sistemas
de informagdes geograficas acessiveis na Internet.

Em paises como a Australia, as informag¢des sobre saude publica séo
relacionadas com incéndios florestais e esta disponivel para o publico em geral
através do Ministério da Saude daquele pais, particularmente, sobre aqueles
Estados que possuem historico de episoddios de queimadas

Diferentes modelos tém sido comumente aplicados na predicdo desses
eventos, incéndios florestais e queimadas, com a utilizacdo de variaveis
meteoroldgicas e de séries histdéricas de dados sobre queimadas e
incéndios florestais, que podem ser descritos por séries temporais, modelos de
regressdes lineares (RL), modelos autorregressivos de médias moveis
integradas (ARIMA) e as RNAs.

Portanto, o estudo de séries temporais tem aplicacdes em diversas areas
do conhecimento, uma vez que permite entender a natureza estocastica de
fendbmenos, identificar padrdes e prever valores futuros a partir de um histérico
conhecido (Morettin e Toloi, 1981).

3.2.1 Estudos Aplicados na Predicdo de Incéndios

Li et al. (2016) conduziram uma pesquisa notavel que se concentrou no uso
de dados de sensoriamento remoto para detecgao de incéndio. O estudo avaliou
varios algoritmos, como maquinas de vetores de suporte, RNAs e arvores de
decisao, e relatou que esses métodos possuem um potencial significativo para
melhorar a precisao da deteccao de incéndio.

Chang et al (2012) dirigiram uma das primeiras revisdes abrangentes sobre
0 uso de algoritmos no gerenciamento de incéndios, cobrindo topicos como
modelagem de comportamento de incéndio, previsao de propagacgéo de incéndio
e sistemas de apoio a decisdo de gerenciamento de incéndio. O estudo sugere

que a IA tem o potencial de melhorar as praticas de gestdo de incéndios,
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oferecendo previsdes de incéndios mais precisas e confiaveis e ferramentas de
apoio a decisao.

Teixeira et al. (2020) administraram um estudo recente que enfoca a
aplicacdo de algoritmos no contexto de preparagdo e resposta a incéndios
florestais. O estudo fornece uma revisdo completa de varios algoritmos, como
florestas aleatérias, arvores de decisdo e RNAs, e destaca seu potencial para
aumentar a eficacia dos esforcos de preparagao e resposta durante um incéndio
florestal. Estas pesquisas demonstram o interesse crescente na aplicagéo
destes no campo da ciéncia e gestdo de incéndios florestais e destacam o
potencial destes métodos para melhorar as praticas de gestao de incéndios.

As estratégias de prevencado de incéndios florestais para detecgao e
supressdo melhoraram significativamente ao longo dos anos, tanto devido as
inovagdes tecnoldgicas quanto a adogao de diversas competéncias e métodos.
Hoje em dia, os investigadores de incéndios florestais utilizam tecnologias que
integram dados sobre previsdo meteoroldgica, topografia, modelagem de
combustivel e outros fatores para prever como os incéndios se propagam
(Zacharakis e Tsihrintzis, 2023; Bakhshaii e Johnson, 2019). O Quadro 2

apresenta as pesquisas em destaque na area de estudo.

Quadro 2 — Pontos de destaques nas pesquisas da area de estudo

Autor (Ano) Foco Principal do Estudo

Previsdo de focos de incéndio no Pantanal com Redes Neurais

Ghorbanzadeh et al.|Mapeamento de suscetibilidade a incéndios utilizando RNA-MLP e

(2019) multiplas variaveis ambientais.

Andlise experimental do comportamento do fogo em espécies da
Luz et al. (2023) Caatinga.

Previsdo de incéndios no Cerrado com dados meteorolégicos e
Barboza et al. (2021) aprendizado de maquina.

Analise dos padrdes e dos impulsionadores de areas queimadas na
Parente et al. (2021) Caatinga.
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Revisdo abrangente sobre o uso de aprendizado de maquina na

Jain et al. (2020) ciéncia de incéndios.

Avaliagdo da suscetibilidade a incéndios em escala global com

Rodrigues et al. (2024) aprendizado de maquina.

TOSIC et al. (2019) Relacao entre variaveis meteoroldgicas e incéndios florestais.

ZIVANOVIC et al. (2020) |Influéncia da temperatura e precipitacdo no comportamento do fogo.

BHATT et al. (2024) Estudo dos principais elementos que influenciam incéndios.

LI et al. (2016) Uso de sensoriamento remoto para detecgéo de incéndios.

TEIXEIRA et al. (2020) Aplicagao de algoritmos para preparacgéo e resposta a incéndios.

ZACHARAKIS et al
(2020) Previsédo de incéndios com dados de meteorologia e topografia.

CHANG et al. (2012) Revisao sobre o uso de algoritmos em gerenciamento de incéndios.

Fonte: Elaborado pelo autor, 2025.

3.3 Redes Neurais Artificiais
3.3.1 Definigdo e Fundamentos Teoricos

A inteligéncia artificial (IA) foi desenvolvida a partir da necessidade de se
analisar um grande volume de dados através da computagido de alto
desempenho, onde a ferramenta neural é uma das diregbes da inteligéncia
artificial.

As RNAs sao modelos computacionais, inspirados no sistema nervoso de
seres vivos. A primeira rede neural foi concebida por Warren McCulloch e Walter
Pitts em 1943. Eles escreveram um artigo seminal constituindo uma analogia
entre as células nervosas e o processo eletrénico, em um artigo publicado no
Bulletin of Mathematical Biophysics com o titulo: A Logical Calculus of the Ideas
Immanent in Nervous Activity (Calculo légico de Ideias inerentes a Atividade
nervosa). Assim, modelaram suas concepg¢des criando uma rede neural simples

com circuitos elétricos.
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Numa relagdo entre neurdnios e redes neurais, temos que os dendritos
foram substituidos por entradas, cujas ligagbes com o corpo celular artificial sédo
realizadas através de elementos chamados de peso que simulam as sinapses.
Os estimulos captados pelas entradas séo processados pela fungcdo de soma, e
o limiar de disparo do neurdnio bioldgico foi substituido pela fungdo de
transferéncia.

De acordo com Abraham et al. (2019), cada neurdnio artificial possui
terminais de entrada similares aos dendritos dos neurdnios biologicos, que
recebem uma informacgao, computam esse dado e, posteriormente, fornecem
uma saida que sera propagada para as demais unidades. Ferneda (2006)
complementa que o comportamento das conexdes entre os neurdnios é definido
por meio de pesos atribuidos a cada uma delas, sendo estes valores positivos
ou negativos, a depender da finalidade do problema.

A Figura 2, apresenta um esquema comparativo de um neurénio biolégico

e a arquitetura da RNA.
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Figura 2 — Esquema comparativo entre (A) neurdnio bioloégico e (B)

arquitetura de RNA

A) ESQUEMA NATURAL DE UM NEURONIO BIOLOGICO

AXIONIO = SAIDA

DENDRITOS = ENTRADA

B CAMADA DE
sy SAIDA

ICAMADA DE ENTRADA
CAMADA INTERMEDIARI

Legenda: (A) Esquema de um neurénio biolégico; (B) arquitetura da RNA.

Fonte: Rafael Manica (2012).
3.3.2 Arquiteturas Fundamentais de RNAs

A arquitetura de RNA refere-se ao seu design estrutural, ou seja, a forma
como os seus componentes fundamentais: neurénios, camadas e conexdes s&o
organizados. E a arquitetura que define o fluxo de informagéo através da rede e
a sua capacidade de aprender e modelar problemas de diferentes

complexidades.

O Perceptron de Camada Simples, é conhecido como Single Layer
Perceptron, esta é a arquitetura mais elementar, consistindo em apenas uma
camada de entrada conectada diretamente a uma camada de saida, sem
camadas intermediarias. Sua simplicidade limita sua capacidade de resolver

problemas nao linearmente separaveis.
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Figura 3 - Arquitetura de Perceptron de Camada Simples.
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Fonte: Biondi, et. al., 2009.

O Perceptron de Multiplas Camadas (MLP), representa uma evolugao
significativa, constituindo-se de uma camada sensorial de entrada, uma ou mais
camadas ocultas intermediarias e uma camada de saida. A presenca de
camadas ocultas permite que a rede aprenda representagcdes hierarquicas e
resolva problemas complexos nao lineares. Conforme Oliveira (2024), o numero
de neurdnios nas camadas de entrada e saida € determinado pelas variaveis do

problema, enquanto as camadas ocultas podem ser ajustadas para otimizar o
desempenho.
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Figura 4 - Arquitetura de Perceptron de Multiplas Camadas
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Fonte: Biondi, et. al., 2009.
3.3.3 Mecanismo de Aprendizado e Propriedades Fundamentais

O processo de aprendizado em RNAs constitui o cerne de sua capacidade
adaptativa. Para cada padréo de entrada apresentado a rede, o algoritmo de
aprendizado avalia a qualidade da resposta produzida mediante comparacao
com o resultado esperado. O erro calculado entre esses dois valores é entéo
retropropagado através da rede, orientando os ajustes nos pesos das conexdes
sinapticas com o objetivo de melhorar o desempenho em interagdes futuras
(Ferneda, 2003).

Este mecanismo de aprendizado confere as RNAs propriedades
distintivas que as tornam particularmente adequadas para problemas
complexos. Braga et al. (2014) sintetizam as principais caracteristicas:

i) organizagao de dados;

i) adaptagado do modelo por experiéncia;
iii) capacidade de aprendizado;

iv) armazenamento distribuido;

v) tolerancia a falhas;

vi) habilidade de generalizacao;
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vii) controle e otimizag&o de sistemas;
viii) processamento de sinais e predi¢cao
(Braga et al, 2014).

As propriedades adicionais que fundamentam a versatilidade das RNAs,
de acordo com Haykin (2001) s&o: ndo-linearidade inerente que permite modelar
relagdes complexas; mapeamento entrada-saida para aproximacéao de funcoes;
adaptabilidade a mudangas ambientais; resposta a evidéncias incompletas ou
conflitantes; tolerancia a falhas robusta; uniformidade de analise e analogia
neurobioldgica consistente; implementagao VLSI eficiente.

Essas propriedades coletivas explicam a aplicabilidade bem-sucedida de
RNAs em problemas ambientais complexos, incluindo deteccdo de fumacga,
monitoramento de florestas, previsdo de queimadas e analise de uso do solo. No
contexto de ecossistemas sensiveis, as técnicas baseadas em RNAs tém
demonstrado capacidade de melhorar significativamente o poder preditivo de
modelos ambientais (Franca et al., 2009; Hauser et al., 2012; Acharya et al.,
2014), justificando sua adogédo para a previsao de incéndios florestais no bioma
Caatinga.

3.3.4 Paradigmas de Aprendizado e Algoritmos

O aprendizado em RNAs configura-se como um processo fundamental e
interativo, por meio do qual a rede ajusta seus parametros internos para mapear
entradas as saidas desejadas, tendo como objetivo primordial a generalizagao
para dados nao observados durante o treinamento. Conforme define Oliveira
(2024), tal processo corresponde a um algoritmo de otimizagao voltado ao ajuste
dos pesos e bias da rede, com a finalidade de minimizar um erro predefinido.

A capacidade de generalizagdo representa uma meta essencial do
treinamento, assegurando que a rede possa "responder adequadamente a
estimulos que nao fizeram parte da amostra de treinamento", conforme
destacado por Maeda et al. (2009). Por meio desse refinamento paramétrico, as
RNAs tornam-se capazes de identificar e extrair padrées complexos dos dados,
competéncia crucial em aplicagdes praticas, como a "identificacdo de padrdes
na deteccdo de queimadas", conforme exemplificado por Duarte Neto et al.
(2011).
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Bishop (1995) classifica os paradigmas de aprendizado em duas
categorias principais: a primeira categoria € do aprendizado supervisionado, que
um supervisor externo fornece a RNA a saida desejada em relagdo a um padrao
de entrada, sendo possivel comparar a saida da RNA com a saida desejada,
obtendo-se o erro referente a resposta atual, e a partir disso, os pesos sinapticos
sdo ajustados de forma a minimizar o erro, e a minimizagédo do erro é
incremental, pois a cada resposta gerada pela rede, sdo efetuados pequenos
ajustes nos pesos das conexdes; e a outra categoria € o aprendizado ngo
supervisionado, € o paradigma que nao existe um supervisor acompanhando o
processo de aprendizagem, e a RNA deve procurar algum tipo de correlagéo ou
redundancia nos dados de entrada.

Para este estudo, foi selecionado o algoritmo Adam (Adaptive Moment
Estimation), desenvolvido por Kingma e Ba (2014), este otimizador combina as
vantagens do momentum, que acelera a convergéncia direcionando as
atualizagdes na diregdo da média passada dos gradientes, com o RMSProp, que
adapta individualmente a taxa de aprendizado para cada parametro.A escolha
do algoritmo Adam, justifica-se por sua eficiéncia computacional, robustez em
problemas com gradientes esparsos ou ruidosos, e menor necessidade de ajuste
fino de hiperpardametros comparado a alternativas como o SGD (Stochastic
Gradient Descent). Essas caracteristicas tornam-no particularmente adequado
para a previsao de incéndios florestais, que envolve relagcdes complexas e nao

lineares entre variaveis meteoroldgicas.

3.3.5 Funcbes de Ativacao

Segundo Oliveira (2024), a fungao de ativagao opera de maneira analoga
ao axbnio de um neurdnio bioldgico, pois é responsavel por disparar o sinal de
saida de um neurdnio para outro apds um certo limiar ser atingido. O autor
prossegue descrevendo as principais fungbes de transferéncia (ou ativagéo)
usadas no processamento neural artificial.

De acordo com Haykin (2001), existem varios tipos de fungdes de ativagao
empregadas em RNAs, cada uma com caracteristicas especificas. As mais

utilizadas sao:

- Fungéo Limiar (ou Degrau), restringe a saida de um neurénio a valores binarios,

como 0 e 1, e a saida assume o valor um (1) se a entrada liquida (soma
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ponderada) for maior ou igual a zero, e zero (0) caso contrario, € comumente

utilizada em Perceptrons para tarefas de classificagao (Equagéao 1);

Fluy={1seu=00seu<0 (1)
- Fungédo Sigmoidal, é a fungao de ativagdo mais comum, definida como uma
funcdo crescente que proporciona um equilibrio adequado entre o
comportamento linear e nao-linear, a fungdo sigmoide restringe a saida do
neurdnio a um intervalo entre 0 e 1, sendo a escolha padrao para a camada de

saida em problemas de classificagao binaria (Equacéo 2);

F(u) = —

T3o-AU (2)
- Fungdo Tangente Hiperbdlica (Tanh), fungcédo frequentemente utilizada como
uma alternativa a fungao logistica, e embora preserve a forma sigmoidal, seu
intervalo de saida € de -1 a 1, e como a fungao log-sigmoide, ela é estritamente

crescente e amplamente aplicada em redes neurais (Equagéao 3);
tanh (u) = (e"x —e"(—x))/(e* +e7%) (3)

- Fungdo ReLU (Rectified Linear Unit), & definida como uma fung¢ao de unidade
de ativacao linear retificada que retorna zero para qualquer entrada que seja
negativa, mas retorna qualquer valor positivo x como retorno (Equacgao 4).

A ReLU resulta em uma saida em um intervalo de zero a infinito (Bhatt,
Chouhan, 2024).

f) =(0,u) (4)
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4 MATERIAIS E METODOS
O procedimento metodoldgico do estudo, encontra-se descrito na Figura 5.

Figura 5 - Fluxograma das etapas metodologicas do estudo

Roteiro Metodolégico

//\\

Dados de Entrada Construgéo da RNA Processamento de Dados
l l v
Radiacéo Global Parametros da rede 2019 - 2024
l l v v
Precipitagéo Treinamento RNA Vetorizagao de dados Dados de Saida
l l v l
Temperatura Maxima Validacdc RNA Separacdo de dados Fogo
Velocidade do Vento Validagédo do Modelo
l v
Umidade Relativa Minima Aplicagdo da RNA
v

Verificacéo da eficiéncia da
RNA

Fonte: Elaborado pelo autor, 2025.

O modelo foi construido, inicialmente, utilizando um conjunto de dezesseis
(17) variaveis de entrada, que incluiu: PRECIP - Precipitagcdo Acumulada (mm);
PATMNE-Pressao Atmosférica Média (hPa); PATMAX- Pressado Atmosférica
Maxima (hPa); PATMIN - Pressdao Atmosférica Minima (hPa); RADGLB-
Radiagdo Global (W/m?); TEMPBUL-Temperatura do Ar bulbo seco (°C);
TEMPORYV -Temperatura do Ponto de Orvalho (°C) ; TEMPMAX- Temperatura
Maxima do Ar (°C); TEMPMIN - Temperatura Minima do Ar (°C); TMAXORV-
Temperatura Maxima do Ponto de Orvalho (°C) ; TMINORV- Temperatura
Minima do Ponto de Orvalho (°C); UMIRMAX- Umidade Relativa Maxima (%);
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UMIRMIN - Umidade Relativa Minima (%); UMIDREL- Umidade Relativa Média;
DIRVENT- Diregao do Vento (m/s); RAJMAX- Rajada Maxima de Vento (m/s);
VELVENT- Velocidade do Vento (m/s).

Como dados de saida, para calibracéo e validagao, foram empregados os
registros de fogo ativo obtidos por satélite. E na etapa de processamento, a série
historica de dados de 2019 a 2024 foi utilizada para o treinamento e a validagao

do modelo.

4.1 Area de Estudo

O estudo abrange uma area de aproximadamente 3.080,00 km? no Sertao
dos Inhamuns, localizada na microrregidao do Sertdo de Crateus, no estado do
Cear4, regiao representativa do semiarido nordestino. A delimitagdo da area de
estudo foi realizada por meio de uma bounding box, que define os limites
geograficos do territério de interesse.

Em Visdo Computacional, a bounding box é a representagdo mais comum
para a localizagdo de objetos em uma imagem. Caracteriza-se pelo menor
retdngulo que circunscreve completamente um objeto de interesse, definido
pelas coordenadas de seus cantos ou por uma coordenada de referéncia
acrescida de sua largura e altura. Essa abordagem é fundamental em tarefas de
detecgdo de objetos, onde algoritmos de aprendizado profundo sado treinados
para prever as coordenadas da bounding box ao redor de cada objeto
identificado (GONZALEZ; WOODS, 2010).

As coordenadas da bounding box para a area do Sertdo de Crateus sao:
Longitude Minima (oeste): -40.950; Latitude Minima (sul): -5.350; Longitude
Maxima (leste): -40.450; Latitude Maxima (norte): -4.850. conforme ilustrado nas

Figuras 6 e 7.
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Figura 6 - Area do Estudo e abrangéncia na regido do sertdo de Crateus, CE.

Fonte: Adaptado GOOGLE earth (2025)

Figura 7 - Area de Estudo com destaque para a bounding box, Microrregido do
Sertdo de Crateus, CE.

Area de Estudo: Sertdo de Crateus, CE

— Arey de Estudo

a1y 5 48" 43 k) 30 Fol

Fonte: Adaptado GOOGLE earth (2025)
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O clima da regido é classificado como semiarido, caracterizado pela
escassez hidrica ao longo do ano, predominante em aproximadamente 92% do
territério cearense, especialmente na regido central. O regime pluviométrico é
concentrado em trés meses (fevereiro a abril), seguidos por nove meses de
estiagem, resultando em indices pluviométricos entre 500 e 800 mm. Essa
irregularidade causa déficit hidrico significativo para a agricultura e populagao
local (Ebbesen, 2016). As macrorregides do Cariri, Sertdo Central, Crateus,
Inhamuns, Centro Sul e Vale do Curu apresentam os menores indices
pluviométricos (Nascimento et al., 2022).

Na escala de Kdppen-Geiger, o clima seco do Ceara é classificado como
BSh — clima seco semiarido quente. Durante o periodo seco, a temperatura do
solo pode atingir 60°C, e a alta incidéncia solar acelera a evaporagéo de corpos
d'agua (ASSOCIACAO CAATINGA, 2004).

A Tabela 1 sumariza as principais caracteristicas da area de estudo,

incluindo area, populagao, coordenadas e indice pluviométrico.

Tabela 1 - Estimativa da Populacdo, Area, indice Pluviométrico, coordenadas e
clima da regiao em estudo.

- Populagdo indice
Municipio (‘?‘('mef) 2022 C°d°;d§:::as Pluviométrico
(hab.) (mm)
[
Cratelis 3.08000  76.390 -40.950, -5.350, -40.450, -4.850  656,4

Fonte: Instituto Brasileiro de Geografia e Estatistica (IBGE) / Instituto de Pesquisa e Estratégia
Econdmica do Ceara (IPECE), 2022.

4.2 Coleta de Dados
4.2.1 Fontes de Dados Meteorolégicos

Para a realizagao deste estudo, foram utilizados dados meteorolégicos
secundarios da regido do Sertdo de Crateus, referentes ao periodo de 2019 a
2024. Os dados foram extraidos das plataformas do Instituto Nacional de
Meteorologia (INMET) e do Centro de Previsdo de Tempo e Estudos Climaticos
(CPTEC) do Instituto Nacional de Pesquisas Espaciais (INPE).

Adicionalmente, foram utilizadas as médias compensadas diarias e

mensais das variaveis meteoroldgicas. O periodo de 2019 a 2024 foi selecionado
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por apresentar séries histéricas com maior estabilidade de dados disponiveis no
INPE e no INMET, e por coincidir com o periodo de estiagem caracteristico da
regiao.

O banco de dados do INMET abriga dados meteoroldgicos diarios em forma
digital, de séries historicas das varias estagdes meteorologicas convencionais da
rede de estagcdes do INMET com milhdes de informacdes, referentes as
medicbes diarias, de acordo com as normas técnicas internacionais da
Organizagao Meteorologica Mundial (INMET,2023).

A Tabela 2, apresenta uma amostra reduzida de dados utilizados para o
treinamento inicial da rede neural, demonstrando médias mensais de variaveis

meteorolégicas para o segundo semestre de 2024.

Tabela 2 - Relagao sintetizada de dados de médias mensais de variaveis
meteorologicas para o segundo semestre de 2024.

NP, Meses de 2024
Julho Agosto Setembro Outubro  Novembro Dezembro

PRECIP(mm) 0.0 0.0 0.0 0.0 0.0 0.1
PATMNE (hpa) 980.7 980.4 979.2 978.2 977.2 977.1
PATMAX (hpa) 980.9 980.7 979.5 978.5 977.5 977.4
PATMIN (hpa) 980.4 980.1 978.9 977.9 976.9 976.8
RADGLB (W/m?) 563.4 788.1 897.2 890.6 948.6 793.0
TEMPBUL (°C) 27.2 27.9 29.3 29.9 30.1 29.7
TEMPORYV (°C) 17.2 14.8 15.5 16.9 16.4 17.6
TEMPMAX(°C) 27.9 28.6 30.0 30.7 30.8 30.5
TEMPMIN (°C)  26.6 27.2 28.6 29.3 294 291
TMAXORYV (°C) 17.6 15.3 16.1 17.4 16.9 18.0
TMINORV (°C) 16.8 14.3 15.0 16.4 15.9 171
UMIRMAX (%)  59.1 49.3 48.4 50.8 48.8 53.3
UMIRMIN (%) 54.3 44.5 43.5 46.0 441 48.7
UMIDREL (%) 56.6 46.8 45.9 48.4 46.4 51.0
DIRVENT (°) 124.4 129.3 101.4 84.9 82.9 79.9
RAJMAX (m/s) 4.9 4.7 5.8 6.5 6.5 6.3
VELVENT(m/s) 1.7 1.7 2.0 2.1 2.1 2.1

Fonte: INME, 2024.

Legenda: Més: referéncia dos dados (07 = julho, 08 = agosto, etc.); (PRECIP): Precipitacao
Acumulada (mm) - Média mensal da precipitacdo diaria; (PATMNE): Pressdo Atmosférica
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Média (hPa) - Média mensal da pressdo ao nivel da estacdo; (PATMAX): Presséo
Atmosférica Maxima (hPa) - Média mensal dos valores maximos diarios de pressao;
(PATMIN): Pressado Atmosférica Minima (hPa) - Média mensal dos valores minimos diarios
de pressao; (RADGLB): Radiagdo Global (W/m?) - Média mensal da radiagéo solar global
incidente; (TEMPBUL): Temperatura do Ar (°C) - Média mensal da temperatura do ar (bulbo
seco); (TEMPORV): Temperatura do Ponto de Orvalho (°C) - Média mensal da temperatura
do ponto de orvalho; (TEMPMAX): Temperatura Maxima do Ar (°C) - Média mensal das
temperaturas maximas diarias; (TEMPMIN): Temperatura Minima do Ar (°C) - Média mensal
das temperaturas minimas diarias; (TMAXORV): Temperatura Maxima do Ponto de Orvalho
(°C) - Média mensal das temperaturas maximas diarias do ponto de orvalho;
(TMINORV): Temperatura Minima do Ponto de Orvalho (°C) - Média mensal das
temperaturas minimas diarias do ponto de orvalho; (UMIRMAX): Umidade Relativa Maxima
(%) - Média mensal dos valores maximos diarios de umidade; (UMIRMIN): Umidade Relativa
Minima (%) - Média mensal dos valores minimos diarios de umidade; (UMIDREL): Umidade
Relativa Média (%) - Média mensal da umidade relativa do ar; (DIRVENT): Direcdo do Vento
(°) - Média mensal da dire¢édo do vento em graus; (RAJMAX): Rajada Maxima de Vento (m/s)
- Média mensal das rajadas maximas diarias de vento; (VELVENT): Velocidade do Vento
(m/s) - Média mensal da velocidade do vento.

Para o monitoramento sistematico de focos de incéndio no periodo de 2019
a 2024, adotou-se uma abordagem multi-satelital, integrando dados de sensores
orbitais com caracteristicas complementares. A coleta de dados baseou-se nos
produtos Fire Active gerados pela constelacdo de satélite de observagao
terrestre da NASA, com énfase nas plataformas TERRA e AQUA. Esses
satélites, em orbitas polares e heliossincronas, garantem cobertura global com
revista diaria ou bidiaria, assegurando a temporalidade necessaria para o
acompanhamento dindmico de queimadas (NASA, 2020).

O sensor MODIS (Moderate Resolution Imaging Spectroradiometer),
operacional a bordo dessas plataformas, forneceu dados multiespectrais em 36
bandas, com resolucdo espacial nominal de 1 km. Complementarmente,
utilizaram-se dados do sensor VIIRS (Visible Infrared Imaging Radiometer Suite),
a bordo do satélite Suomi-NPP, que apresenta resolucao espacial superior (375
m) na faixa do infravermelho médio, particularmente adequada para a detecgao
de incéndios de menor escala (NOAA, 2021).

O satélite NOAA-20, integrante do Joint Polar Satellite System (JPSS),
também foi incorporado a analise, ampliando a redundancia temporal e espacial
do sistema de monitoramento.

Os dados brutos foram obtidos diretamente da plataforma FIRMS (Fire
Information for Resource Management System) da NASA. Os produtos originais
incluiram arquivos nos formatos vetorial (shapefile), matricial (textfile) e tabular

(CSV), contendo metadados essenciais para a analise, tais como: Coordenadas
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geograficas (latitude e longitude); Data e hora da detecc¢ao (UTC); satélite/sensor
de origem; indice de confianga do fogo (confidence); Area ou pixel afetado.

Apds a coleta, os dados passaram por varias etapas de poés-
processamento. A filtragem de qualidade removeu detecgbes com indice de
confianga (confidence) inferior a 80%, conforme a metodologia validada por
Giglio et al. (2020), e excluiu registros que estavam fora da area de interesse. A
padronizagcao dos metadados incluiu a unificagao dos formatos de data/hora e o
ajuste dos sistemas de referéncia espacial. Para o georreferenciamento, foi
realizada a espacializagdo precisa em Sistemas de Informagdo Geografica
(SI1G), com corregdes para distorgdes orbitais, além da validagao cruzada com
imagens de alta resolugdo. A analise termodindamica foi feita usando a
temperatura do pixel (brightness), com valores em Kelvin para a identificagéo de
hotspots, e o Poder Radioativo do Fogo (FRP), que é a poténcia radiante em
megawatts (MW), para estratificar os incéndios por intensidade.

O fluxograma da Figura 8 e o Quadro 3, ilustram as principais fases do
processamento de dados, destacando a integragéo dos diferentes sensores e as

etapas de validacao e caracterizagao.



Figura 8 - Fases do processamento de dados e as etapas de validagao e caracterizagao.
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Fonte: Elaborado pelo autor, 2025.
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Etapa Descrigao Fontes de Dados/ | Periodo / Detalhes
Ferramentas
1.Definicao da Delimitagdo geografica da Coordenadas: Area representativa do

Area de Estudo

microrregiao a ser
estudada.

Longitude Minima,
Latitude Minima e
Longitude Maxima,

Latitude Maxima.

semiarido nordestino.

2.Coleta de

Dados

Coleta de dados
meteoroldgicos e de focos

de calor.

INME, INPE, NASA
FIRMS, TERRA,
AQUA, Suomi-NPP e
NOAA-20).

Dados de 2019 a 2024.

3.Processamento
de Dados de

Focos de Calor

Abordagem multi-satelital,
filtragem de qualidade,
padronizagao de
metadados,
georreferenciamento,

analise termodinamica.

Sensores MODIS (1km)
e VIIRS (375m).

Focos de incéndio:1
(ocorréncia) ou 0 (ndo

ocorréncia).

4.Processamento
de Dados

Climatolégicos

Selegao de variaveis

meteoroldgicas.

ANA e INMET.

Calculo de médias diarias

para cada variavel.

5.Aplicacao da
RNA

Utilizagao de modelo
Perceptron de
Multicamadas (MLP) com
algoritmo de
retropropagacao de erros

(backpropagation).

Linguagem de
programacao Python e
bibliotecas para analise

estatistica.

Dados de 2019 a 2024 para

construgcéo da RNA.

6.Andlise de

Importancia das

Determinagao da influéncia

de cada variavel na

Método de permutacéo

de features.

Identificagdo de variaveis

mais relevantes.

Variaveis predicdo de focos de
incéndios.
7.Avaliagcdo de | Andlise da acuricia do | Curvas de aprendizado. | Avaliagao de Acurdcia global

Desempenho do
Modelo

modelo.

e, sensibilidade.

Fonte: Elaborado pelo autor, 2025.
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4.2.2 Processamento de Dados Climatoldgicos

As variaveis meteorologicas selecionadas para analise de correlagao
incluem: Precipitagcdo Diaria Acumulada (mm), Radiagdo Global (KJ/m2),
Temperatura Maxima (°C), Umidade Relativa do Ar e Velocidade do Vento (m/s)
necessarias para a aplicacao do meétodo de predigao.

Os dados de precipitagdo serdo selecionados das estagcdes da Agéncia
Nacional de Aguas (ANA), que contém dados recentes de precipitacdo e que
estdo presentes no entorno e dentro da area de estudo. Os dados de Radiagao
Global (KJ/m2), Temperatura Maxima(°C), Umidade Relativa do Ar e Velocidade
do Vento (m/s) serao retirados de uma estagao automatica do INMET.

A partir destes dados de estacgao, serao calculadas as médias diarias para

cada variavel.
4.2.3 Preparagao e Analise de Dados para Modelagem

Partiu-se de uma massa de dados brutos contendo 18.598 registros
diarios e 17 variaveis, abrangendo o periodo de junho a dezembro dos anos de
2019 a 2024, intervalo mais propenso a incéndios no bioma da Caatinga.

No entanto, um dos objetivos deste estudo foi reduzir o numero de
variaveis de entrada para o modelo, tornando-o mais simples, acessivel, facil de
usar e interativo para diversos publicos, como 6rgaos governamentais nas
esferas federal, estadual e municipal, empresas de diferentes portes,
organizagdes ndo-governamentais (ONGs) e comunidades locais.

Uma analise aprofundada de importancia e correlacdo indicou que um
subconjunto reduzido de variaveis seria mais eficaz para aplicagdes praticas,
sem comprometer a capacidade preditiva. Apdés um rigoroso processo de
refinamento, que incluiu a limpeza dos dados, a filtragem de inconsisténcias e a
selecdo das variaveis mais relevantes, chegou-se a um conjunto final de 5.470
registros validos.

Estes registros foram estrategicamente balanceados, distribuindo-se
igualmente 5.470 registros para cada uma das seis variaveis preditivas principais
identificadas pela analise de pesos da camada oculta da RNA: precipitacdo
(PRECIP), temperatura maxima (TEMPMAX), velocidade do vento (VELVENT),
radiacdo global (RADGLB), umidade relativa (UMIDREL) e Més Critico
(MES_CRITICO).
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Os dados foram vetorizados, associando cada conjunto de variaveis de
entrada (caracteristicas meteorolégicas) numericamente a sua respectiva saida
(ocorréncia ou nao de fogo: 1 ou 0). Este procedimento assegurou a qualidade,
consisténcia e homogeneidade do dataset utilizado para a modelagem
subsequente.

O conjunto de dados foi dividido em trés subconjuntos para o treinamento
da RNA, seguindo a proporgédo: treinamento (70%), validagdo (15%) e teste
(15%). A divisao foi realizada de forma estratificada, preservando a propor¢ao
da variavel target (ocorréncia de fogo) em cada conjunto, visando

evitar overfitting e garantir a generalizagédo do modelo.

4.2.4 Arquitetura da RNA

A RNA implementada foi do tipo Multilayer Perceptron (MLP), composta
por uma camada de entrada, uma camada oculta e uma camada de saida.

A camada de entrada do modelo é composta por 6 neurdnios,
correspondendo as seis variaveis de entrada selecionadas e otimizadas:
Radiagdo Global (RADGLB), Umidade Relativa (UMIDREL), Temperatura
Maxima (TEMPMAX), Precipitacdo (PRECIP), Velocidade do Vento (VELVENT)
e Més Critico (MES_CRITICO).

A camada oculta foi objeto de otimizagao, testando-se diferentes numeros
de neuronios (5, 10, 15 e 20) e fungbes de ativacdo (ReLU, Sigmoid e Tanh). A
camada de saida possui um unico neurdnio com fung¢ao de ativagdo sigmoidal,
apropriada para problemas de classificagdo binaria. A Figura 9 ilustra a

arquitetura geral da RNA.
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Figura 9 - Representagdo esquematica da RNA com uma camada oculta.

SIGMOID

PRECIP

Neuronios

Fonte: Elaborado pelo autor, 2025.

4.2.5 Treinamento e Configuragdo do Modelo

O algoritmo de treinamento empregado foi o Adam (Adaptive Moment
Estimation), um método de otimizag&do estocastica que combina as vantagens
dos algoritmos AdaGrad e RMSProp, adaptando a taxa de aprendizado para
cada parametro. A fungéo de perda utilizada foi a entropia cruzada binaria (binary
cross-entropy), adequada para problemas de classificagao binaria.

A selecédo do melhor modelo foi realizada mediante uma busca em grade
(grid search) sobre as combinac¢des de fungbes de ativagdo e numero de
neurbnios na camada oculta. Foram testadas 12 combinag¢des possiveis (3
fungdes de ativagdo x 4 numeros de neurbnios). Cada modelo foi treinado por
50 épocas com tamanho de lote (batch size) de 32. O desempenho de cada
configuragéo foi avaliado no conjunto de validag&o, utilizando a acuracia como
métrica principal. A configuragdo que obteve a maior acuracia no conjunto de

validacao foi selecionada como a melhor.
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Apds a selegdo, o modelo foi retreinado utilizando os conjuntos de
treinamento e validacdo combinados, e sua performance final foi avaliada no
conjunto de teste. Essa metodologia assegura que o modelo escolhido seja

aquele que apresenta a melhor generalizagao para dados ndo vistos.



47

5 RESULTADOS E DISCUSSAO

Esta secao apresenta os resultados obtidos a partir da aplicagdo do
modelo de previsao de focos de incéndios florestais utilizando RNAs, bem como
a discussao aprofundada sobre a importancia das variaveis, o desempenho do
modelo durante o treinamento e as implicacdes desses achados para a predigao
de incéndios no semiarido nordestino. A analise detalhada do modelo foi
realizada com base nos dados e metodologias descritas na se¢cao 5 deste
trabalho, visando fornecer uma compreensdo abrangente da capacidade
preditiva e das caracteristicas operacionais da solugéo proposta.

5.1 Analise Inicial com Todas as Variaveis

Inicialmente, o modelo de previsdo de incéndios florestais foi concebido
para operar com um conjunto abrangente de variaveis, visando capturar a
maxima complexidade dos fatores ambientais. Este conjunto inicial incluia dados
detalhados como Pressao Atmosférica ao Nivel da Estacdo (mB), Presséo
Atmosférica Maxima (mB), Pressdo Atmosférica Minima na Hora Anterior (mB),
Radiagao Global (KJ/m2), Temperatura do Ar Bulbo Seco (°C), Temperatura do
Ponto de Orvalho (°C), Temperatura Maxima na Hora (°C), Temperatura Minima
(°C), Temperatura do Orvalho Maxima (°C), Temperatura do Orvalho Minima
(°C), Umidade Relativa Maxima, Umidade Relativa Minima, Umidade Relativa do
Ar, Diregdo do Vento Horaria (graus), Rajada Maxima do Vento (m/s) e
Velocidade do Vento Horaria (m/s).

A riqueza analitica proporcionada por um extenso quantitativo de dados
veio acompanhada de desafios operacionais e praticos. Modelos com um grande
numero de variaveis, além de demandarem alta capacidade computacional e
maior volume de dados para treinamento, tornam-se complexos para
interpretacéo e sdo mais suscetiveis a overfitting. Essa complexidade representa
uma barreira significativa para a implementagao em 6rgaos governamentais ou
comunidades locais, que frequentemente possuem recursos limitados.

Portanto, centralizar esfor¢cos para simplificar o modelo, tornando-o mais
acessivel e pratico sem perder a acuracia preditiva, configurou-se como a

abordagem central para viabilizar a aplicagédo do modelo.
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A justificativa para a redugdo do numero de variaveis baseia-se em
diversos principios da modelagem preditiva e da ciéncia de dados:

° Interpretabilidade: Modelos mais simples, com menos variaveis, sao
intrinsecamente mais faceis de entender e explicar. Isso é crucial para que os
tomadores de decisdo possam confiar e utilizar as previsbes do modelo de forma
eficaz.

° Eficiéncia Computacional: Um menor numero de variaveis reduz a
carga computacional para treinamento e inferéncia do modelo, tornando-o mais
rapido e menos intensivo em recursos, o que € vital para sistemas de alerta em
tempo real.

° Generalizagao: A redugao de variaveis pode ajudar a mitigar o risco de
overfitting, onde o modelo aprende ruidos nos dados de treinamento em vez de
padrées generalizaveis, resultando em um desempenho deficiente em dados
nao vistos.

° Coleta de Dados Simplificada: A dependéncia de um conjunto menor de
variaveis simplifica o processo de coleta e manutengdo de dados, tornando o
modelo mais robusto e aplicavel em regides onde a disponibilidade de dados é
limitada.

° Relevancia Pratica: Focar nas variaveis mais influentes permite que os
esforcos de monitoramento e as estratégias de prevencao sejam direcionados
aos fatores de maior impacto, otimizando a alocagao de recursos.

Assim, a pesquisa evoluiu para uma abordagem de reducg&o de variaveis,
focando em um subconjunto mais conciso e relevante, composto por cinco
variaveis meteorolégicas chave (UMIDREL, TEMPMAX, RADGLB, VELVENT,
PRECIP) e uma variavel categérica para os meses criticos (MES_CRITICO),
visando otimizar a praticidade e a usabilidade sem comprometer a acuracia
preditiva.

No contexto do bioma Caatinga. Estudos como o de Silva et al. (2023)
destacam que a suscetibilidade do bioma ao fogo € acentuada por seu clima,
que naturalmente apresenta altas temperaturas e baixa umidade relativa. Além
disso, Parente et al. (2021) demonstraram que os maiores picos de area
gueimada na Caatinga ocorreram em anos de seca, influenciados por anomalias
climaticas como o El Nifo, reforcando a validade das variaveis atmosféricas

utilizadas neste trabalho como preditoras de risco.
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Em uma anadlise de escala global, Rodrigues et al. (2024) também
identificaram, por meio de aprendizado de maquina, que a temperatura média do
trimestre mais seco e a precipitagdo anual estdo entre os preditores mais
importantes da suscetibilidade a incéndios no mundo, o que valida a abordagem
metodoldgica e a selegéo de variaveis aqui adotadas.

5.2 Analise da Importancia das Variaveis

A determinagao da importancia das variaveis de entrada para o modelo
de RNA foi essencial para compreender quais fatores ambientais exercem maior
influéncia na predicdo de focos de incéndios. Para tal, empregou-se o método
de permutacdo de features, uma técnica que avalia a contribuicdo de cada
variavel ao medir a diminuicdo da acuracia do modelo quando seus valores sao
aleatorizados, conforme descrito por Breiman (2001). Este método permitiu
identificar as variaveis mais relevantes, fornecendo percep¢cdes sobre os
mecanismos subjacentes a ocorréncia de incéndios florestais na regido de
estudo.

De acordo com os resultados da execugédo do script Python com o
conjunto de variaveis reduzido, a analise de importancia das variaveis revelou
uma ordem de influéncia distinta daquela que havia sido inicialmente
considerada. As variaveis meteoroldgicas selecionadas para o modelo otimizado
foram Radiacéo Global (RADGLB), Umidade Relativa (UMIDREL), Temperatura
Maxima (TEMPMAX), Precipitacgdo (PRECIP) e Velocidade do Vento
(VELVENT), além da variavel categérica Més Critico (MES_CRITICO), que
representa os meses de julho a outubro. A ordem decrescente de importancia
relativa, conforme determinado pelo modelo, foi a seguinte:

1. Més Critico (MES_CRITICO): 27.91%

2. Radiacdo Global (RADGLB): 20.68%

3. Temperatura Maxima (TEMPMAX): 18.94%
4. Velocidade do Vento (VELVENT): 14.86%
5. Umidade Relativa (UMIDREL): 10.61%

6. Precipitacao (PRECIP): 7.00%
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Esta nova ordem de importancia difere significativamente de analises
iniciais, onde a Radiacao Global era apontada como a variavel de maior impacto
entre as meteoroldgicas.

Os resultados atuais indicam que o Més Critico é o fator mais critico, o
que é altamente consistente com o conhecimento empirico e estudos na area,
como o de Parente et al. (2021), pois os meses de julho a outubro séo
historicamente reconhecidos como o periodo de maior incidéncia de incéndios
na regido de estudo devido as condigbes climaticas mais secas e quentes. A
Figura 10, demonstra as principais variaveis influentes para previsdo de

ocorréncia de incéndios.

Figura 10- Grafico das variaveis influentes para previsdo de ocorréncia de incéndios
florestais na regido de estudo.

Importancia das Varidveis no Modelo de Previsdo de Incéndios
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T
0 5 10 15 20 25
Importancia Relativa (%)

Fonte: Elaborado pelo autor, 2025.

5.2.1 Radiacao Global

Os resultados da analise de importancia das variaveis revelaram que a
Radiagdo Global (RADGLB) se destacou como a variavel meteorolégica de
maior impacto na previsao de focos de incéndios. Esta informagéao € consistente
com o conhecimento de dominio empirico, uma vez que alta radiagcdo solar
contribui significativamente para a secagem da vegetacdo, aumentando sua

suscetibilidade a ignicdo e propagacdo do fogo. A relacdo observada foi



51

predominantemente positiva, indicando que um aumento na radiagao global esta
associado a uma maior probabilidade de ocorréncia de incéndios.

Em um estudo focado no Cerrado, Barboza et al. (2021) utilizaram dados
meteorologicos e aprendizado de maquina, identificando a insolagdo como uma
variavel de alta importancia preditiva.

De modo similar, ao prever queimadas no Pantanal, Vigané et al. (2017)
destacaram que a radiagao solar afeta o numero de focos quando associada a
condigdes de baixa umidade e altas temperaturas.

O estudo de Sgorla et al. (2024) também utilizou a radiagdo solar diaria
média em seu modelo de ocorréncia de fogo para o bioma Pampa. Outros
trabalhos, como o de Ghorbanzadeh et al. (2019), também incluiram a radiagéo
solar potencial em seus modelos de RNA para mapear a suscetibilidade a

incéndios.
5.2.2 Temperatura Maxima

A Temperatura Minima (TEMMAX) também demonstrou ser uma variavel
influente. Temperaturas elevadas podem ser indicativas de condi¢des climaticas
mais secas e persistentes, que favorecem a criagdo de um ambiente propicio
para incéndios, contribuindo para a secagem da vegetagdo e o aumento da
temperatura do solo. A relagdo com o risco de fogo pode apresentar nido-
linearidades, refletindo a complexidade das interagbées atmosféricas.

Jain et al. (2020), em sua ampla revisao sobre o tema, destacam que o
clima é um dos fatores inter-relacionados que determinam a ocorréncia de um
incéndio. Eles citam estudos especificos que utilizaram a temperatura como
variavel preditora em modelos de aprendizado de maquina.

Luz et al. (2023), em um estudo experimental no bioma Caatinga,
recomendam que areas de risco sejam monitoradas com atencgao,
"principalmente em épocas que condi¢des como a elevada temperatura do ar e
baixa umidade favorecem a ocorréncia do fogo".

Barboza et al. (2021). Ao preverem incéndios no Cerrado brasileiro,
também analisaram as variaveis de temperatura maxima, média e minima como

entradas para seus modelos de aprendizado de maquina.
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Sgorla et al. (2024) também incluiram a temperatura média, maxima e
minima como variaveis climaticas em seu estudo para modelar a ocorréncia de
fogo no bioma Pampa, no Brasil.

Hang et al. (2024) selecionaram a temperatura como uma das nove
variaveis condicionantes para seu modelo de suscetibilidade a incéndios. A
analise de interpretabilidade também apontou a temperatura como um fator

influente.

5.2.3 Velocidade do Vento

A velocidade do vento (VELVENT) como esperado, mostrou uma forte
correlagdo negativa com a ocorréncia de incéndios. Ventos fortes séo
conhecidos por acelerar a propagagcdo do fogo e dificultar o controle de
incéndios, o que justifica sua relevancia na predicdo, embora ndo seja o fator
desencadeante primario.

Vigané et al. (2017) utilizaram a "Velocidade do Vento (S)" como variavel
preditora em seu modelo de RNA para o Pantanal. Da mesma forma, Barboza et
al. (2021) incluiram a velocidade do vento em sua analise para o Cerrado, e
Sgorla et al. (2024) a utilizaram para modelar a ocorréncia de fogo no Pampa,
demonstrando a relevancia desta variavel em diferentes ecossistemas do pais.

Jain et al. (2020), em sua reviséo, citam diversos trabalhos que utilizam
o vento como variavel climatica fundamental.

Estudos como o de Bui et al. (2017) e Hang et al. (2024) incluiram a
velocidade do vento como um fator condicionante chave em seus modelos de

IA, ao lado de outras variaveis como temperatura e precipitagao.
5.2.4 Umidade Relativa

Umidade Relativa (UMIDREL) como esperado, mostrou uma moderada
correlagado negativa com a ocorréncia de incéndios. Baixos niveis de umidade
relativa do ar sdo diretamente associados a diminui¢ao do teor de umidade na
biomassa vegetal, tornando-a mais inflamavel. A importancia desta variavel
reforca a necessidade de monitoramento continuo das condigdes de umidade
para a gestao de riscos de incéndio.

Vigano et al. (2017), em sua analise para o Pantanal, confirmaram que

valores altos de umidade relativa dificultam a propagacéo do fogo, enquanto
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condigdes de baixa umidade favorecem o aumento de focos de incéndio. Para o
Cerrado.

Barboza et al. (2021) incluiram as umidades relativas maxima, média e
minima como variaveis preditoras importantes em seus modelos de aprendizado
de maquina.

No contexto especifico da Caatinga, Luz et al. (2023) reforgam que o risco
de fogo é acentuado em épocas de baixa umidade, validando a base fisica para

a importancia desta variavel no semiarido.

5.2.5 Precipitagao

A Precipitagdo (PRECIP), embora fundamental para a redug¢ao do risco
de fogo, apareceu com uma importancia ligeiramente menor em comparagao
com outras variaveis meteoroldgicas. Isso pode ser atribuido a sua natureza
intermitente e a forma como os dados foram incorporados ao modelo, ou a
predominancia de outros fatores em periodos de estiagem. Esta observacao
pode refletir a dindmica particular dos ecossistemas sazonalmente secos, como
a Caatinga, caracterizados por uma distribui¢cao irregular das chuvas (Luz et al.,
2023).

De fato, a auséncia de chuva, mais do que sua quantidade absoluta, € um
gatilho critico, algo que Anderson et al. (2021) utilizaram em seu modelo de
alerta, que se baseia na previsao de precipitagcdo abaixo da média para indicar
risco elevado.

Hang et al. (2024), por exemplo, identificaram a precipitacdo anual como
um dos fatores chave na modelagem de suscetibilidade a incéndios no Himalaia,
enquanto Ghorbanzadeh et al. (2019) confirmaram que a baixa precipitagéo

aumentou significativamente a suscetibilidade ao fogo em florestas no Ira.

5.3 Estratégia de Simplificagao do Modelo

A estratégia para a reducdo de variaveis foi guiada pelo objetivo de
simplificar o modelo sem comprometer significativamente seu desempenho,
tornando-o mais pratico para aplicacbes em campo. O processo envolveu as

seguintes etapas:

° Analise de Importancia Inicial: Inicialmente, foi realizada uma analise

de importancia de todas as variaveis disponiveis no conjunto de dados completo.
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Esta etapa permitiu identificar as variaveis com maior poder preditivo e aquelas

com menor contribuicido para o modelo.

° Selecao de Variaveis Meteoroloégicas Chave: Com base na analise de
importancia e no conhecimento especializado sobre a dindmica dos incéndios
florestais, foram selecionadas as cinco variaveis meteorolégicas mais
relevantes: UMIDREL, TEMPMAX, RADGLB, VELVENT e PRECIP. Estas
variaveis sdo amplamente reconhecidas na literatura como fatores criticos para
a ocorréncia e propagacgao de incéndios, conforme apontado por autores como
Silva et al. (2023) e Rodrigues et al. (2024).

° Criagao da Variavel Més Critico: Para capturar a forte sazonalidade dos
incéndios, foi criada uma variavel categérica binaria, "MES_CRITICO", que
indica se 0 més em questdo esta entre julho e outubro. Este periodo foi
identificado como de alta criticidade para a ocorréncia de incéndios na regiao de
estudo. A inclusdo desta variavel simplifica a representagao de um fator temporal
complexo, que de outra forma exigiria multiplas variaveis para cada més ou

analises de séries temporais mais elaboradas.

° Reavaliagdao do Modelo Reduzido: O modelo foi entdo re-treinado e
avaliado utilizando apenas este conjunto reduzido de seis variaveis (cinco
meteorolégicas + Més Critico). O desempenho do modelo otimizado foi
comparado com o modelo original (com todas as variaveis) para garantir que a
reducao nao resultasse em uma perda inaceitavel de acuracia. A acuracia de
71.12% com o conjunto reduzido, comparavel ao desempenho do modelo
completo, validou a abordagem de simplificagao.

Esta abordagem de redugdo de variaveis nao apenas manteve a
capacidade preditiva do modelo, mas também aumentou sua interpretabilidade
e praticidade, alinhando-o com os requisitos de uso publico e governamental. A
énfase na simplicidade e na manutencao do desempenho é fundamental para a

adocao e eficacia de sistemas de alerta precoce de incéndios florestais.

5.3.1 Resultados do Modelo Simplificado

Ap0ds a otimizacao e redugao das variaveis de entrada, o modelo de RNA

foi reavaliado para verificar seu desempenho com o conjunto simplificado de 5



55

variaveis meteorologicas (UMIDREL, TEMPMAX, RADGLB, VELVENT,
PRECIP) e a variavel categérica Més Critico (MES_CRITICO). O objetivo foi
demonstrar que a simplificagdo ndo comprometeria a capacidade preditiva do
modelo, tornando-o mais pratico e eficiente para uso em campo.

Os resultados da execugao do script Python indicaram que o melhor
modelo encontrado utilizou a fungéo de ativagao sigmoid com 5 neurénios na
camada intermediaria. As métricas de desempenho obtidas no conjunto de teste

foram as seguintes:

Acuracia no teste: 73.86%.

Precisao no teste: 72.79%.

Estes valores representam uma melhoria em relagao aos resultados do
modelo anterior (tanh com 20 neurénios, acuracia de teste de 70.82% e precisao
de teste de 67,48%), e sdo comparaveis a acuracia de 71.12% mencionada no
contexto inicial para o modelo otimizado. A acuracia de 73.86% com um modelo
mais simples e interpretabilidade aprimorada valida a estratégia de reducéo de
variaveis, demonstrando que é possivel manter um desempenho robusto com
menor complexidade. A tabela 3 exibe o comparativo entre os dois modelos

testados.

Tabela 3 — Comparacéao entre os modelos de RNA.

Variaveis de Neurénios na Funcéo de Acuracia de Precisdo de
Modelo  entrada camada ativagao teste (%) teste (%)
intermediaria
Modelo 17 20 Tangente 70,82 67,48%
Inicial
Modelo 6 5 Sigmoid 73,86 72,79
reduzido

Fonte: Elaboracao prépria (2025).

5.3.2 Matriz de Confusao

A Matriz de Confusao é uma ferramenta visual essencial para avaliar o
desempenho de um modelo de classificacdo, detalhando os acertos e erros para
cada classe. O objetivo do modelo é prever a ocorréncia de duas classes: "Fogo"
(1) e "Sem Fogo" (0).
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As matrizes de confusao geradas pelo script Python para os conjuntos de

validagéao e teste sao apresentadas na Figura 11.

Figura 11 — Matriz de confus&o obtida durante o treinamento da rede neural

Matriz de Confuso - Teste

Matriz de Confusdo - Valldacio -

160

Verdadewo

Preditn Pradito

Fonte: Adaptado de cddigo Python (2025)

Os valores das matrizes de confusao geradas para o modelo simplificado
mostram um desempenho equilibrado. No conjunto de validagdo, o modelo
identificou corretamente 103 eventos de "Fogo" (Verdadeiros Positivos) e 180
eventos de "Sem Fogo" (Verdadeiros Negativos), com 44 Falsos Positivos e 56
Falsos Negativos.

Ja no conjunto de teste, o modelo conseguiu identificar 107 eventos de
"Fogo" corretamente (Verdadeiros Positivos) e 136 eventos de "Sem Fogo"
corretamente (Verdadeiros Negativos). Os Falsos Positivos (40) e Falsos
Negativos (46) indicam as areas onde o modelo ainda pode ser aprimorado, mas
o balango geral demonstra uma capacidade preditiva razoavel para ambas as

classes, 0 que é crucial para um sistema de alerta precoce.

5.3.3 Curva de Aprendizado

As curvas de aprendizado e da fungdo de perda sao cruciais para
monitorar a evolugdo do modelo durante o treinamento e identificar

comportamentos como overfitting ou underfitting. A Figura 12 apresenta a
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evolugdo da acuracia e funcdo de perda para os conjuntos de validagdo do

melhor modelo simplificado.

Figura 12 — Graficos de Acuracia e Fung¢ao de Perda durante o Treinamento
AZUraa durante o TroineEmemn L05E gurante o Trainamants

li&af . . LifsLt]

-'I"-'.ll" 7 T o L '\..||'||I:.

Fonte: Adaptado de cédigo Python (2025)

As curvas de acuracia de treino e validagado para o modelo simplificado (
sigmoid com 5 neurdnios) demonstram um comportamento de aprendizado
estavel. Ambas as curvas iniciam em torno de 0.525 e convergem para valores
préximos a 0.73-0.74. A proximidade entre as curvas de treino e validagao ao
longo das épocas indica um bom equilibrio e a auséncia de overfitting
significativo, sugerindo que o modelo aprendeu padrdes generalizaveis dos
dados.

Similarmente, as curvas de perda de treino e validagdo mostram uma
diminuicdo consistente ao longo das épocas, partindo de aproximadamente 0.69
e estabilizando em torno de 0.52-0.53. A convergéncia das curvas de perda e a
auséncia de divergéncia entre elas reforcam a estabilidade do treinamento e a
capacidade do modelo de minimizar o erro de forma eficaz, sem sobreajustar
aos dados de treino.

Nesse sentido, o trabalho de Sistani e Kazemitabar (2025), que treinou
uma rede neural convolucional para detecgdo de fogo em imagens, também
reportou uma curva de aprendizado com um aumento acentuado e paralelo da

acuracia de treino e validacido nas épocas iniciais, alcangando elevados valores
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de precisdo em poucas interacbes. Essa fase demonstra a eficiéncia do
algoritmo em aprender as relagdes iniciais entre as variaveis de entrada e a
ocorréncia de focos de incéndio.

Ja comportamento da funcdo de perda durante o treinamento € um
complemento essencial a analise da acuracia, fornecendo uma medida direta do
erro do modelo. A literatura metodolégica reforca que o objetivo central do
treinamento de uma RNA é, precisamente, minimizar essa funcao de erro.

Vigan6é et al. (2017), por exemplo, explicam que o algoritmo de
backpropagation (retropropagacdo de erros) ajusta os pesos da rede para
minimizar a diferenca entre a saida do modelo e o valor esperado.

De forma similar, Ghorbanzadeh et al. (2019) descrevem este processo
como uma comparagao ciclica entre a saida calculada e os valores reais, onde
0s pesos sdo atualizados em cada ciclo para minimizar o erro global. A
centralidade dessa métrica é tal que o préprio processo de otimizacao é definido
como a busca por uma configuragao de hiperparametros que diminua o erro de
validag&o, como apontado por Liu, Chen e Asadi (2025).

A observacao da perda para os conjuntos de treino e validag&o, portanto,
permite uma compreensdo mais aprofundada da convergéncia e do ajuste do

modelo.

5.3.4 Relatdrio de Classificagao Detalhado

Para uma avaliacdo mais aprofundada do desempenho do modelo, o
relatorio de classificagdo detalhado para o conjunto de teste fornece métricas
como precisao, recall e F1-score para cada classe (Fogo e Sem Fogo). Estes
indicadores sao cruciais para entender a capacidade do modelo em identificar
corretamente cada tipo de evento. A Tabela 4 apresenta esses resultados
detalhados.

Tabela 4 - Relatério de Classificagdao do modelo

Classe Precision Recall F1-Score Support

0 (Sem Fogo) 0.75 0.77 0.76 176
1 (Fogo) 0.73 0.70 0.71 153
Accuracy 0.74 329
Macro Avg 0.74 0.74 0.74 329
Weighted Avg 0.74 0.74 0.74 329

Fonte: Elaborado pelo autor, 2025.
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A avaliagdo do modelo no conjunto de teste revelou uma acuracia global
de 74%, indicando uma performance preditiva robusta. Uma anélise mais
detalhada por classe demonstra um desempenho equilibrado. Para a classe
"Sem Fogo" (0), o modelo apresentou uma precisdo de 0.75, significando que
75% das previsdes de auséncia de fogo estavam corretas, e um recall de 0.77,
0 que indica a correta identificacdo de 77% dos eventos reais sem fogo. O F1-
score de 0.76, sendo a média harmdnica entre essas duas métricas, confirma a
consisténcia do modelo para esta classe.

No que tange a classe "Fogo" (1), de maior interesse para um sistema de
alerta, a precisao foi de 0.73. Notavelmente, o recall atingiu 0.70, um resultado
de grande relevancia pratica, pois demonstra que o sistema foi capaz de
identificar 70% dos eventos de fogo reais, minimizando os falsos negativos, que
representam o cenario de maior risco. O F1-score de 0.71 para esta classe
reflete um desempenho razoavel na tarefa critica de deteccéo de incéndios.

Em sintese, as métricas equilibradas, incluindo os F1-scores médios
(macro e ponderado) de 0.74 , indicam que o modelo possui uma capacidade
preditiva balanceada, qualificando-se como uma ferramenta valiosa para
otimizar a alocacao de recursos e apoiar estratégias de prevengéo e combate a
incéndio.

5.4 Comparacao de Desempenho: Modelo Completo vs. Modelo Reduzido

Para validar a eficacia da estratégia de redugéo de variaveis, foi realizada
uma comparagao direta entre o desempenho do modelo completo (com todas as
variaveis inicialmente consideradas) e o modelo otimizado com o conjunto
reduzido de variaveis (5 meteoroldgicas + Més Critico). O objetivo foi demonstrar
que a simplificagdo do modelo nao resultou em uma perda significativa de
acuracia, mas sim em um ganho de praticidade e interpretabilidade. A Tabela 5
compara as métricas de desempenho entre o modelo completo e o0 modelo

reduzido.
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Tabela 5: Métricas de acuracia e precisdo para ambos os modelos no conjunto

de teste.
Modelo Acuracia no Teste Precisao no Teste
Modelo Completo 70,82% 67,48%
Modelo Reduzido 73,86% 72,79%

Fonte: Elaborado pelo autor, 2025.

Conforme ilustrado na Figura 13, o modelo reduzido ndo apenas manteve,
mas superou ligeiramente o desempenho do modelo completo em termos de
acuracia e precisao no conjunto de teste. A acuracia do modelo reduzido foi de
73.86%, enquanto a do modelo completo foi de 70.82%. Similarmente, a preciséo

do modelo reduzido foi de 72.79%, superior aos 67.48% do modelo completo.

Figura 13 — Comparagéao de desempenho entre o Modelo Completo e o Modelo
Reduzido.
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Fonte: Adaptado de codigo Python (2025)

Esta melhoria no desempenho com um conjunto de variaveis mais enxuto
€ um resultado notavel e reforga a validade da metodologia de redugao de
variaveis. Isso sugere que as variaveis removidas no processo de otimizagéo
podem ter introduzido ruido ou redundancia, ou que o modelo simplificado

conseguiu capturar os padrbes essenciais de forma mais eficiente. A capacidade
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de alcangar um desempenho superior com menor complexidade € um avango
significativo para a aplicagao pratica do modelo, pois facilita a coleta de dados,
reduz a carga computacional e aumenta a interpretabilidade, tornando-o mais
adequado para uso por 6rgaos governamentais e comunidades locais na gestéo

de incéndios florestais.

5.5 Implicagoes Praticas e Usabilidade do Modelo

A otimizacdo do modelo de previsdo de incéndios florestais, com a
reducao do numero de variaveis de entrada para um conjunto conciso de cinco
variaveis meteorologicas e uma variavel categorica para meses criticos, traz
implicagdes praticas significativas e melhora substancialmente a usabilidade da
ferramenta para diversos stakeholders. O principal objetivo desta abordagem foi
desenvolver um modelo que ndo apenas apresentasse um desempenho
preditivo robusto, mas que também fosse acessivel, facil de implementar e de
manter em contextos operacionais reais, especialmente para Orgaos

governamentais e comunidades locais.

5.5.1 Facilidade de Coleta e Disponibilidade de Dados

Um dos maiores desafios na implementacido de sistemas de alerta
precoce de incéndios € a disponibilidade e a qualidade dos dados de entrada.
Ao focar em variaveis como Umidade Relativa (UMIDREL), Temperatura Maxima
(TEMPMAX), Radiacao Global (RADGLB), Velocidade do Vento (VELVENT) e
Precipitagdo (PRECIP), o modelo se baseia em dados meteoroldgicos que sao
amplamente coletados e disponibilizados por estagdes meteoroldgicas e
servicos climaticos. A variavel Més Critico (MES_CRITICO) é ainda mais
simples, sendo derivada diretamente do calendario. Essa simplificagcdo reduz
drasticamente a complexidade e o custo associados a coleta e ao pré-
processamento de dados, tornando o modelo mais viavel para regides com

infraestrutura limitada de monitoramento ambiental.

5.5.2 Interpretabilidade e Tomada de Decisao

A clareza sobre quais variaveis sao mais influentes na previsdo de
incéndios (Més Critico, Radiagao Global e Temperatura Maxima, por exemplo)
permite que os gestores e formuladores de politicas compreendam melhor os

fatores de risco e desenvolvam estratégias de preveng¢ao mais direcionadas. Um
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modelo com alta interpretabilidade facilita a comunicagéo dos riscos a populagao
e a justificacdo de medidas preventivas, como campanhas de conscientizagao
ou restricdes a atividades que possam iniciar incéndios. A capacidade de explicar
"por que" o modelo fez uma determinada previsdo aumenta a confianga na

ferramenta e promove sua adogao.

5.5.3 Eficiéncia Operacional e Escalabilidade

Com um numero reduzido de variaveis, o modelo demanda menos
recursos computacionais para treinamento e execugéo. Isso significa que ele
pode ser implementado em plataformas de hardware mais modestas, como
computadores de campo ou sistemas embarcados, o que é uma vantagem para
operacdes em areas remotas. A eficiéncia computacional também se traduz em
previsdes mais rapidas, permitindo que alertas sejam emitidos em tempo habil,
crucial para a resposta a emergéncias. Além disso, a simplicidade do modelo
facilita sua escalabilidade para outras regides ou biomas, desde que os dados

das variaveis selecionadas estejam disponiveis.

5.5.4 Potencial para Integracdo em Sistemas de Alerta Precoce

O modelo otimizado se encaixa perfeitamente na arquitetura de sistemas
de alerta precoce de incéndios florestais. Sua saida binaria (Fogo/Sem Fogo)
pode ser facilmente integrada a painéis de controle, aplicativos méveis ou
sistemas de informacao geografica (SIG), fornecendo informagdes claras e
acionaveis para equipes de brigadistas, defesa civil e populacdo em geral. A alta
acuracia (73.86%) e o bom recall para a classe "Fogo" (70%) garantem que o
modelo seja uma ferramenta confidvel para identificar situagbes de risco,

minimizando falsos negativos que poderiam levar a desastres.

5.5.5 Contribuicdo para a Gestdo Ambiental e Politicas Publicas

Ao oferecer uma ferramenta preditiva robusta e pratica, esta pesquisa
contribui diretamente para a gestdo ambiental e o desenvolvimento de politicas
publicas mais eficazes no combate aos incéndios florestais. A capacidade de
prever com antecedéncia os periodos e as condi¢cdes de alto risco permite a
alocagao estratégica de recursos, a intensificagdo da fiscalizacdo em areas
vulneraveis e a implementacdo de programas de educagao ambiental mais

focados. Em ultima analise, o modelo otimizado serve como um valioso suporte
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a decisdo para a protecdo de ecossistemas, da biodiversidade e das

comunidades humanas afetadas por esses eventos catastroéficos.
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6 CONSIDERAGOES FINAIS

Este trabalho se prop6s a desenvolver e otimizar um modelo RNA para a
previsao de incéndios florestais no semiarido nordestino, com o objetivo central
de criar uma ferramenta que fosse ndo apenas precisa, mas também pratica e
acessivel para diversos publicos, como érgédos governamentais nas esferas
federal, estadual e municipal, empresas de diferentes portes, organizagbes nao-
governamentais (ONGs) e comunidades locais.

A principal contribuigdo desta pesquisa reside na validagcdo de uma
metodologia de reduc¢ao de variaveis que, contraintuitivamente, resultou em um
modelo superior. A transigdo de um conjunto de dados abrangente e complexo
para um conjunto simplificado, composto por cinco variaveis meteoroldgicas
(UMIDREL, TEMPMAX, RADGLB, VELVENT, PRECIP) e uma variavel
categorica (MES_CRITICO), provou ser uma estratégia de sucesso. O modelo
otimizado, utilizando uma fung¢do de ativagdo sigmoid com 5 neurdnios, nao
apenas manteve a capacidade preditiva, mas superou o modelo original,
alcangando uma acurdcia de 73.86% e precisao de 72.79% no conjunto de teste,
em comparagao com os 70.82% de acuracia do modelo completo. Este resultado
notavel sugere que a remogao de variaveis menos relevantes reduziu ruidos e
redundancias, permitindo que o modelo capturasse os padroes essenciais de
forma mais eficiente.

A analise de importancia das variaveis corroborou o conhecimento empirico
ao identificar o "Més Critico" (julho a outubro) como o fator de maior influéncia
para a ocorréncia de fogo, com 27.91% de importancia relativa. Variaveis como
Radiacdo Global e Temperatura Maxima também se mostraram altamente
relevantes. A analise das curvas de aprendizado e de perda confirmou a
estabilidade do modelo, que demonstrou um treinamento equilibrado e sem
overfitting significativo, indicando sua capacidade de generalizar padrdes a partir
dos dados.

Do ponto de vista pratico, a simplificagdo do modelo tem implicagdes
profundas. A dependéncia de um numero menor de variaveis meteoroldgicas,
que sao amplamente coletadas, reduz drasticamente a complexidade e os
custos associados a coleta e ao processamento de dados. A eficiéncia

computacional aprimorada permite a implementagdo em hardware mais modesto
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e a geragdo de alertas mais rapidos, um fator crucial para a resposta a
emergéncias. Além disso, a alta interpretabilidade facilita a tomada de deciséo,
aumenta a confianga na ferramenta e permite o desenvolvimento de estratégias
de prevenc¢ao mais direcionadas.

O modelo demonstrou um desempenho equilibrado na distingdo entre as
classes "Fogo" e "Sem Fogo". O recall de 70% para a classe "Fogo" é
particularmente encorajador, pois indica que o sistema é capaz de identificar uma
parcela significativa dos incéndios reais, minimizando falsos negativos que
poderiam levar a desastres.

Em suma, este estudo conclui que é viavel desenvolver um sistema de
alerta precoce de incéndios florestais que equilibra com sucesso acuracia e
praticidade. A pesquisa ndo apenas entrega um modelo preditivo robusto e
validado, mas também reforga que, em modelagem preditiva, a complexidade
nem sempre € sinbnimo de melhor desempenho. O modelo otimizado se
apresenta como uma ferramenta de grande valor para a gestdo ambiental e o
desenvolvimento de politicas publicas, oferecendo um suporte a decisdo agil e
confiavel para a protecdo dos ecossistemas, da biodiversidade e das
comunidades do semiarido nordestino contra os impactos devastadores dos

incéndios florestais.
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APENDICE A - CODIGO DO ALGORITMO DA REDE NEURAL FINAL

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.impute import Simplelmputer
from sklearn.metrics import confusion_matrix, classification_report,
accuracy_score, precision_score
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
import matplotlib.pyplot as plt
import seaborn as sns
import os

# Criar diretorio para salvar graficos
if not os.path.exists("graphs_reduced_features"):
os.makedirs("graphs_reduced_features")

# Carregar os dados
df = pd.read_csv("DadosFelipeFinal.csv", parse_dates=["DATA"])

# Criar a variavel MES_CRITICO (Julho, Agosto, Setembro, Outubro)
df["MES_CRITICO"] = df["DATA"].dt.month.isin([7, 8, 9, 10]).astype(int)

# Selecionar as 5 variaveis meteorologicas e a nova variavel MES_CRITICO
selected_features = ['RADGLB", "UMIDREL", "TEMPMAX", "PRECIP", "VELVENT",
"MES_CRITICQO", "FOGO"]

df_filtered = df[selected_features].copy()

# Verificar valores nulos e preencher com média

imputer = Simplelmputer(strategy="mean")

df_imputed = pd.DataFrame(imputer fit_transform(df_filtered.drop("FOGQ", axis=1)),
columns=df_filtered.drop("FOGQ", axis=1).columns)

# Separar features e target
X = df_imputed
y = df_filtered["FOGQ"]

# Divisdo dos dados: 70% teste, 15% treino, 15% validagao X_temp, X_test,
y_temp, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
X_train, X_val, y_train, y_val = train_test_split(X_temp, y_temp,
test_size=0.5,

random_state=42)

# Padronizagéo dos dados

scaler = StandardScaler()

X_train_scaled = scaler fit_transform(X_train)
X_val_scaled = scaler.transform(X_val)
X_test_scaled = scaler.transform(X_test)

# Parametros para testar

activations = ["relu”, "sigmoid", "tanh"]
neurons_list =[5, 10, 15, 20]

results =[]

# Loop sobre diferentes configuragcbes
for activation in activations:

for neurons in neurons_list:
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model = Sequential([
Dense(neurons, activation=activation, input_shape=
(X_train.shape[1],)),
Dense(1, activation="sigmoid")
1)
model.compile(optimizer="adam", loss="binary_crossentropy", metrics=
["accuracy")

# Treinar o modelo
history = model.fit(X_train_scaled, y_train,
validation_data=(X_val_scaled, y_val),
epochs=50, verbose=0, batch_size=32)

# Avaliar no conjunto de validagao

val_loss, val_acc = model.evaluate(X_val_scaled, y_val, verbose=0)
y_val_pred = (model.predict(X_val_scaled) > 0.5).astype(int)
val_precision = precision_score(y_val, y_val_pred)

# Avaliar no conjunto de treino para verificar overfitting
train_acc = history.history["accuracy"][-1]
results.append({

"activation": activation,

"neurons": neurons,

"val_accuracy": val_acc,

"val_precision": val_precision,

"train_accuracy": train_acc,

"history": history,

"model": model

b

# Gerar graficos de acuracia e loss para cada modelo testado
plt.figure(figsize=(10, 4))

plt.subplot(1, 2, 1)

plt.plot(history.history["accuracy"], label="Treino")
plt.plot(history.history["val_accuracy"], label="Valida¢ao")
plt.title(f"Acuracia ({activation}, {neurons} neurénios)")
plt.legend()

plt.subplot(1, 2, 2)

plt.plot(history.history["loss"], label="Treino")
plt.plot(history.history["val_loss"], label="Validagao")
plt.title(f"Loss ({activation}, {neurons} neurdnios)")
plt.legend()

plt.tight_layout()

plt.savefig(f"graphs_reduced_features/performance_{activation} {neurons} neurons. plt.close()

# Encontrar melhor modelo com base na acuracia de validagdo

best_result = max(results, key=lambda x: x["val_accuracy"])

print(f"Melhor modelo: {best_result["activation"]} com {best_result["'neurons"]} neurbénios")
print(f"Acuracia validagao: {best_result["val_accuracy"]:.4f}")

print(f"Precisao validagéo: {best_result["val_precision"]:.4f}")

# Treinar melhor modelo com todos os dados de treino+validagéo
X_final_train = np.vstack([X_train_scaled, X_val_scaled])
y_final_train = np.hstack([y_train, y_val])
best_model = Sequential([
Dense(best_result["'neurons"], activation=best_result["activation"],
input_shape=(X_train.shape[1],)),
Dense(1, activation="sigmoid")
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best_model.compile(optimizer="adam", loss="binary_crossentropy", metrics=
["accuracy"])

best_model fit(X_final_train, y_final_train, epochs=50, verbose=0,
batch_size=32)

# Avaliar no conjunto de teste

test_loss, test_acc = best_model.evaluate(X_test_scaled, y_test, verbose=0) y_test pred
= (best_model.predict(X_test_scaled) > 0.5).astype(int) test_precision =
precision_score(y_test, y_test pred)

print(f"\nDesempenho no conjunto de teste:")

print(f"Acuracia: {test_acc:.4f}")

print(f"Preciséo: {test_precision:.4f}")

# Matriz de confuséo para validagao

y_val_pred_best = (best_result["'model"].predict(X_val_scaled) >
0.5).astype(int)

cm_val = confusion_matrix(y_val, y_val_pred_best)
plt.figure(figsize=(8, 6))

sns.heatmap(cm_val, annot=True, fmt="d", cmap="Blues")
plt.title("Matriz de Confuséao - Validagao")
plt.ylabel("Verdadeiro")

plt.xlabel("Predito")
plt.savefig("graphs_reduced_features/confusion_matrix_validation.png") # Salvar a imagem
plt.close()

# Matriz de confuséo para teste

cm_test = confusion_matrix(y_test, y_test_pred)

plt.figure(figsize=(8, 6))

sns.heatmap(cm_test, annot=True, fmt="d", cmap="Blues")

plt.title("Matriz de Confuséao - Teste")

plt.ylabel("Verdadeiro")

plt.xlabel("Predito")

plt.tight_layout()

plt.savefig("graphs_reduced_features/confusion_matrix_test.png") # Salvar a imagem
plt.close()

# Graficos de desempenho do melhor modelo

plt.figure(figsize=(12, 4))

plt.subplot(1, 2, 1)

plt.plot(best_result["history"].history["accuracy"], label="Treino")
plt.plot(best_result["history"].history["val_accuracy"], label="Validagao") plt.title("Acuracia
durante o Treinamento")

plt.legend()

plt.subplot(1, 2, 2)
plt.plot(best_result["history"].history["loss"], label="Treino")
plt.plot(best_result["history"].history["val_loss"], label="Valida¢éo") plt.title("Loss
durante o Treinamento")
plt.legend()
plt.tight_layout()
plt.savefig("graphs_reduced_features/performance_best_model.png") # Salvar a imagem
do melhor modelo
plt.close()
# Verificar overfitting/underfitting
if best_result["train_accuracy"] > best_result["val_accuracy"] + 0.1: print("Possivel

overfitting detectado")
elif best_result["val_accuracy"] < 0.6:

print("Possivel underfitting detectado")
else:

print("Modelo com bom equilibrio entre treino e validagao")



# Relatério de classificagdo detalhado

print("\nRelatério de Classificagao (Teste):")
classification_report_str = classification_report(y_test, y_test pred,
output_dict=True)

print(classification_report(y_test, y_test pred))

e e e e e e
##Importancia das Variaveis

# Criar e treinar o modelo para importancia das variaveis (usando a mesma
configuragdo do melhor modelo)
model_importance = Sequential([

Dense(best_result['neurons"], activation=best_result["activation"],
input_shape=(X_train.shape[1],)),

Dense(1, activation="sigmoid")
)
model_importance.compile(optimizer="adam", loss="binary_crossentropy", metrics=
["accuracy")
model_importance. fit(X_train_scaled, y_train, validation_data=(X_val_scaled, y_val),
epochs=50, verbose=0, batch_size=32)

# Calcular a importancia das variaveis
weights = model_importance.layers[0].get_weights()[0] # Pesos da primeira camada
importance = np.mean(np.abs(weights), axis=1) # Média absoluta dos pesos por feature

# Normalizar a importancia para percentuais
importance = 100 * importance / np.sum(importance)

# Criar DataFrame com as importancias
feature_importance = pd.DataFrame({
"Feature": X.columns,
"Importance": importance
}).sort_values("Importance", ascending=True)

# Plotar o grafico de importancia
plt.figure(figsize=(10, 6))
plt.barh(feature_importance["Feature"], feature_importance["Importance"],
color="skyblue")
plt.xlabel("Importancia Relativa (%)")
plt.title("Importancia das Variaveis no Modelo de Previsédo de Incéndios (Features
Reduzidas)")
plt.grid(axis="x", alpha=0.3)
# Adicionar valores percentuais nas barras
for i, v in enumerate(feature_importance["Importance"]):
plt.text(v + 0.5, i, f"{v:.1f}%", va="center")
plt.tight_layout()
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plt.savefig("graphs_reduced_features/feature_importance_plot_reduced_features.png # Salvar a

imagem
plt.close()

# Exibir a importancia em forma de tabela
print("\nlmportancia das Variaveis (Features Reduzidas):")
print(feature_importance.sort_values("Importance”, ascending=False))

# Graficos de dispersao para TODAS as variaveis importantes
all_important_features = feature_importance["Feature"].tolist()

for feature in all_important_features:
plt.figure(figsize=(10, 6))
sns.scatterplot(x=df_imputed[feature], y=y, hue=y, palette="viridis", alpha=0.6)



plt.title(f"Dispersao de {feature} vs. Ocorréncia de Fogo (Features
Reduzidas)")

plt.xlabel(feature)

plt.ylabel("FOGO (0=Nao Fogo, 1=Fogo)")

plt.yticks([O, 11, ['N&o Fogo", "Fogo"])

plt.savefig(f"graphs_reduced_features/scatter_{feature} vs FOGO_reduced_features. plt.close()
# Salvar o relatério de classificagdo em um arquivo para facil acesso with

open("graphs_reduced_features/classification_report_test reduced_features.txt", "w") as f:
f.write(classification_report(y_test, y_test pred))
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