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“ A Geometria existe por toda a parte, é
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compreendê-la e alma para admirá-la.”
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RESUMO

A presente pesquisa incentiva professores e estudantes das escolas públicas a terem um

olhar diferenciado sobre entes geométricos. Realizamos revisões bibliográficas de alguns

tópicos de Geometria que são pouco abordados na Educação Básica, mas que têm bas-

tante aplicabilidade na resolução de problemas oĺımpicos. Nosso ponto de partida foram

os conceitos básicos da Geometria Plana, começamos pela semelhança de triângulos e

posteriormente aplicamos uma sequência didática em duas turmas do nono ano de uma

escola do munićıpio de Juarez Távora-PB. Fizemos uso do software GeoGebra em quase

todas as etapas dessa sequência didática e em grande parte desta pesquisa, nosso principal

objetivo é utilizá-lo como uma ferramenta didática auxiliadora nas provas dos teoremas,

na compreensão dos conceitos, na visualização e construção de figuras e na elaboração

do produto didático que acompanha este trabalho. Em seguida, abordamos os teore-

mas da Bissetriz Interna e da Bissetriz Externa e suas aplicações, ambos os teoremas são

muito importantes na resolução de problemas, desde os mais simples aos mais sofisticados.

Nesse contexto, exploramos outros dois importantes resultados, o Teorema de Ceva em

suas formas usual e trigonométrica e o Teorema de Menelaus, ambos seguidos de algumas

aplicações. Por fim, apresentamos o famoso Teorema da Borboleta com sua demonstração

detalhada e ainda demos espaço aos quadriláteros inscrit́ıveis acompanhados por uma lista

de exerćıcios.

Palavras-chave: geometria plana; geogebra; software educativo.



ABSTRACT

This research encourages teachers and students from public schools to have a differentiated

view of geometric entities. We conducted bibliographic reviews of some topics in Geometry

that are rarely addressed in Basic Education, but which have significant applicability in

solving Olympic problems. Our starting point was the basic concepts of Plane Geometry;

we began with the similarity of triangles and later applied a didactic sequence in two ninth-

grade classes at a school in the municipality of Juarez Távora-PB. We made use of the

GeoGebra software in almost all stages of this didactic sequence and in a large part of this

research; our main objective is to use it as a supportive teaching tool for theorem proofs,

understanding concepts, visualizing and constructing figures, and developing the didactic

product that accompanies this work. Next, we addressed the theorems of the Internal

Angle Bisector and the External Angle Bisector and their application, both theorems

are very important in solving problems, from the simplest to the most sophisticated.

In this context, we explore two other important results, Ceva’s Theorem in its usual

and trigonometric forms, and Menelaus’s Theorem, both followed by some applications.

Finally, we present the famous Butterfly Theorem with its detailed proof and also give

space to inscribable quadrilaterals accompanied by a list of exercises.

Keywords: plane geometry; geogebra; educational software.
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1 INTRODUÇÃO

O estudo da Semelhança de Triângulos e das Relações Métricas no triângulo retângulo

está presente em todos os livros didáticos de matemática dos ensinos Fundamental e

Médio, sem exceção, isto é fato. Diante dos mais variados desafios metodológicos que os

professores de matemática enfrentam tentando repassar o conhecimento desses conceitos

aos estudantes, resolvemos dar uma parcela de contribuição através deste trabalho. Nossa

missão é fazer com que o entendimento de diversos conteúdos por parte dos alunos seja

cada vez melhor e mais prazeroso.

O trabalho educativo nas escolas do nosso páıs não é uma tarefa fácil, diariamente

enfrentamos problemas nas salas de aulas que causam algumas consequências aos estu-

dantes, tais como a evasão escolar, a desistência, as notas baixas nas avaliações, entre

outros. Por esta razão, devemos nos atentar às inovações tecnológicas que estão à nossa

volta.

Pensando nisso, recorremos ao uso do software de geometria dinâmica, o GeoGebra,

que é um dos softwares mais utilizados no cotidiano escolar. Essa ferramenta educacional

digital é muito útil para os alunos visualizarem diversos objetos geométricos. Por exemplo,

figuras planas, figuras tridimensionais (sólidos), segmentos de reta, pontos, áreas, volu-

mes, gráficos de funções, etc. Além disso, o uso deste aplicativo possibilita um melhor

entendimento dos conteúdos por parte dos estudantes.

Utilizamos este recurso tecnológico para nos auxiliar no ensino da semelhança de

triângulos durante a aplicação de uma sequência didática em uma Escola de Ensino Fun-

damental situada no munićıpio de Juarez Távora-PB. Além disso, fizemos uso do GeoGe-

bra para construir a grande maioria das figuras que compõem esta dissertação e também

para construir algumas animações de demonstrações de teoremas.

De acordo com a Base Nacional Comum Curricular (BRASIL, 2018, p.265), mais pre-

cisamente, em sua 5ª competência espećıfica de matemática para o Ensino Fundamental,

devemos: “Utilizar processos e ferramentas matemáticas, inclusive tecnologias digitais

dispońıveis, para modelar e resolver problemas cotidianos, sociais e de outras áreas do

conhecimento, validando estratégias e resultados”.

Ou seja, é plenamente posśıvel e indicado o uso das tecnologias, desde que se queira,

no ambiente escolar.

Com o desejo de ir mais além, abordamos neste trabalho resultados matemáticos de

geometria que, em geral, não são apresentados nos livros didáticos da educação básica,

mesmo os mais aprofundados. Demos destaque a vários teoremas no decorrer deste traba-

lho, tais como o Teorema de Tales, o Teorema da Bissetriz Interna e da Bissetriz Externa,

o Teorema de Ceva, o Teorema de Menelaus, o Teorema da Borboleta, entre outros.

Fizemos em detalhes as demonstrações dos teoremas citados com o intuito de facilitar a
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assimilação e a compreensão de quem vier a usufruir deste material. Apresentamos alguns

problemas clássicos de geometria que são encontrados na Olimṕıada Internacional de

Matemática (IMO) e em outras referências internacionais. Também foram feitas diversas

aplicações destes resultados de uma forma didática e de maneira que possa contribuir

para o desenvolvimento do leitor em suas atividades escolares, ainda tivemos o cuidado

de utilizar aplicações cujas soluções pudessem ser entendidas e apreciadas pelo público da

educação básica.

1.1 Objetivos

1.1.1 Objetivo geral

O presente trabalho tem o propósito de despertar estudantes e professores da educação

básica, de forma singela, para os conhecimentos que os conceitos matemáticos podem

atingir, em particular, os da geometria plana. Tais conceitos formam uma base muito

importante para diversos teoremas e resultados geométricos que foram explorados no

decorrer dessa dissertação.

1.1.2 Objetivos espećıficos

� Fazer com que estudantes da educação básica tenham o primeiro contato com o

GeoGebra;

� Utilizar o software GeoGebra para construir figuras com a participação dos alunos;

� Oferecer ao público em geral uma fonte de informações a respeito da semelhança de

triângulos e suas aplicações;

� Incentivar e despertar o interesse de professores e alunos pelo uso do GeoGebra como

instrumento auxiliar nas aulas de matemática e também na resolução de exerćıcios

e problemas mais sofisticados;

� Tornar as aulas mais dinâmicas e prazerosas através do GeoGebra, explorar, entre

suas diversas funções, a visualização de figuras planas e espaciais;

� Trabalhar o conceito de semelhança de triângulos envolvendo suas aplicações através

de teoremas e problemas oĺımpicos;

� Elaborar e aplicar uma sequência didática que permite o uso do software GeoGebra

como recurso tecnológico para um melhor engajamento e aprendizado dos estudan-

tes;

� Explorar, demonstrar e aplicar determinados teoremas que, em geral, não são vistos

nos livros didáticos mas podem ter suas provas compreendidas através de resultados

elementares da geometria plana.
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� Contribuir de maneira eficaz para o melhoramento e aperfeiçoamento do ensino de

matemática nas escolas públicas da educação básica.

1.2 Organização do trabalho

O presente trabalho está organizado da seguinte forma:

Na Introdução, temos as considerações iniciais sobre o tema, destacando os principais

motivos e desafios que nos levaram a desenvolver esta dissertação. Expomos também os

objetivos gerais e espećıficos com o intuito de que estes sejam alcançados e fizemos um

apanhado geral sobre a estrututa do trabalho.

No Caṕıtulo 2, damos ênfase aos aspectos históricos da semelhança de triângulos e

das relações métricas; com uma pesquisa de cunho histórico contemplamos alguns dos

principais resultados da semelhança de triângulos obtidos ao longo dos séculos. Além

disso, também damos destaque às principais e mais importantes contribuições de grandes

sábios da história da Geometria da cultura ocidental, no que diz respeito à noção de

semelhança.

Em seguida, no Caṕıtulo 3, destacamos formalmente os conceitos de semelhança de

triângulos e de relações métricas no triângulo. Neste caṕıtulo fizemos uma abordagem

ampla das principais referências bibliográficas utilizadas nas escolas públicas, (Dante,

2018) e também nas universidades, como nos cursos de graduação (Barbosa, 2012) e de

mestrado (Caminha, 2022)), a fim de reunirmos nesta dissertação uma formalização mais

rica e relevante para o ensino desses conteúdos na sala de aula.

No Caṕıtulo 4, nos direcionamos ao uso do Software GeoGebra no ensino de geometria,

em particular, no ensino da semelhança de triângulos e das relações métricas. A utilização

deste recurso foi feita através de uma sequência didática aplicada em duas turmas de

9º ano, no turno da manhã da Escola Municipal de Ensino Fundamental Lúıs Ribeiro

Coutinho, situada na cidade de Juarez Távora no estado da Paráıba.

No Caṕıtulo 5, apresentamos alguns belos problemas de geometria, destacamos o Teo-

rema da Bissetriz Interna, o Teorema da Bissetriz Externa, o Teorema de Ceva, o Teorema

de Menelaus, além do Corolário de Tales e exemplos de aplicações desses resultados. Por

fim, deixamos uma lista de exerćıcios para professores e alunos que se interessem por

problemas oĺımpicos, resolvê-los.

Acerca do Caṕıtulo 6, apresentamos o Teorema de Papillon ou o Teorema da Borbo-

leta, este nome deve-se à semelhança entre a figura descrita pelo teorema e uma borbo-

leta. Além disso, temos uma seção que trata sobre os quadriláteros inscrit́ıveis e algumas

aplicações. Buscamos aplicar os resultados obtidos na resolução de problemas oĺımpicos

e de outros exemplos, como é o caso dos quadriláteros inscrit́ıveis.

Por fim, no Caṕıtulo 7, explanamos as considerações finais sobre o trabalho, levamos

em consideração os pontos que mais se destacaram ao longo desta dissertação, bem como

a enorme parcela de contribuição dada pelo software GeoGebra.
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2 ASPECTOS HISTÓRICOS DA GEOMETRIA

Ao longo do tempo muitos povos ajudaram a construir o caminho milenar trilhado

pela matemática, em particular, pela Geometria, que é uma das mais belas áreas da

matemática.

Conforme (Roque; Carvalho, 2012) os conhecimentos geométricos dos povos da Ba-

bilônia e do Egito eram voltados para uma geometria métrica, isto é, eles realizavam

medições de comprimentos, áreas e volumes de acordo com suas necessidades, entretanto,

não se sabe ao certo como eles adquiriram estes conhecimentos. Os babilônios também

calculavam volumes de sólidos geométricos com perfeição, como por exemplo, o cilindro

circular reto e os prismas retos, de bases triangulares e quadrangulares.

De acordo com (Ribeiro, 2017), no Antigo Egito, alguns agricultores privilegiados pelo

Faraó Soséstres cultivavam suas plantações às margens do Rio Nilo, onde cada um faziam

de pedras, suas próprias cercas. Todos os anos as cheias do Nilo invadiam aquelas terras

férteis para a agricultura e deixavam os terrenos daqueles trabalhadores com as cercas

derrubadas. Então, entravam em ação os estiradores de corda, que eram uma espécie

de funcionários do faraó, enviados para refazer as medições e marcações das cercas que

haviam sido derrubadas, estes, por sua vez, utilizavam cordas marcadas com nós.

Isso nos mostra que há muito tempo os povos eǵıpcios já tinham seus conhecimentos

geométricos e os utilizavam de acordo com suas necessidades. Esses fatos citados remetem

ao ano 3000 a.C.

Desde a Antiguidade, o ser humano se encanta com as formas geométricas presentes na

natureza e, de maneira espontânea, consegue perceber e fazer analogias a tais formas. Por

exemplo, os corpos celestes sempre despertaram a curiosidade dos grandes astrônomos e

f́ısicos da época. A Lua, o Sol e os planetas lembram circunferências quando vistos aqui

da terra, enquanto as posições entre três quaisquer desses corpos lembram um triângulo.

Foi através da semelhança de triângulos que grandes sábios da Antiguidade, ao longo

dos tempos, resolveram problemas até então inéditos para a ciência.

Como por exemplo, no Artigo do professor Geraldo Ávila, publicado na revista do

Professor de Matemática-RPM 54, em que destaca o grego Aristarco de Samos (310 a.C.-

230 a.C.), que calculou a distância da Terra à Lua e da Terra ao Sol, usando triângulos

retângulos, semelhanças de triângulos e proporções. Vale ressaltar que os resultados obti-

dos por Aristarco, acerca dessas distâncias, não são exatamente iguais aos que conhecemos

hoje, mas para a época foi uma boa aproximação.

Ainda segundo Ávila, na RPM 55, outro grande nome foi o de Eratóstenes (276 a.C.-

196 a.C.), que conseguiu calcular o raio da Terra com a utilização de estudos de ângulos

correspondentes em um feixe de paralelas cortadas por transversais, também com a pro-

porcionalidade entre medidas e comprimentos de arcos e na razão entre o comprimento
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de uma circunferência e seu diâmetro.

Nicolau copérnico (1473-1543), nascido na Polônia, resgatou a teoria heliocêntrica de

Aristarco, de que as órbitas dos planetas em torno do Sol eram circulares (que não deram

certo na época) e fez cálculos como o das distâncias dos planetas até o Sol, utilizando

proporcionalidade de arcos e semelhança de triângulos.

O alemão Johannes Kepler (1571-1630), retomou às ideias de Nicolau Copérnico e

descobriu que as órbitas planetárias são na verdade eĺıpticas e ainda apresentou as três

leis que hoje conhecemos por ”Leis de Kepler”. Por trás dessas leis existe muita propor-

cionalidade.

Podemos ver que ao longo da História, várias contribuições foram dadas em diferentes

épocas, esses feitos foram de grande contribuição tanto para a sociedade daquela época

quanto para o avanço no estudo da Geometria, uma vez que, em todas essas descobertas

mencionadas foram aplicados muitos conceitos geométricos que conhecemos hoje. Recor-

rendo a uma época mais distante, antes da Era Cristã, temos Tales de Mileto:

Segundo (Roque; Carvalho, 2012), Tales de Mileto (624 a.C. - 548 a.C., aproximada-

mente), foi um dos primeiros matemáticos gregos a despertar o olhar dos povos de sua

época, através da sua brilhante ideia de calcular a altura de uma das pirâmides do Egito

utilizando a proporcionalidade. Tales é considerado um dos mais importantes gênios da

Antiguidade.

Figura 1 – Tales de Mileto.

Fonte: Wikipédia.
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Conforme (Boyer; Merzbach, 2012), ao retornar do Egito, Tales levou para a Grécia

muitos conhecimentos geométricos dos eǵıpcios; enquanto viajou para a Babilônia, apren-

deu astronomia. Ainda segundo Boyer, em 585 a.C. Tales assombrou o mundo com a

previsão de um eclipse solar, mas a veracidade desse feito é duvidosa.

A semelhança de triângulos, que é uma forma de proporcionalidade, é um conceito

matemático que nos permite calcular distâncias inacesśıveis, como é o caso da altura da

pirâmide Quéops, encontrada por Tales.

Tales comparou o comprimento da sombra da pirâmide com o comprimento da sombra

de uma estaca fincada verticalmente no solo, os comprimentos dessas duas sombras podiam

ser medidos facilmente, bem como a altura da estaca, foi assim que Tales encontrou através

da semelhança de triângulos a altura da pirâmide:

Figura 2 – Calculando a altura da Pirâmide.

Fonte: Dispońıvel em: https://menteplus.com/educacion/biografias/tales.

A Figura 2, é uma representação do processo realizado por Tales, em que H é a altura

da pirâmide e h é a altura da estaca, como a sombra da pirâmide tem comprimento a e a

sombra da estaca tem comprimento b, podemos utilizar as relações de semelhança entre

os triângulos e encontrar o valor de H.

H

h
= a
b
⇒H = h ⋅ a

b
.

Essa é uma famosa e antiga aplicação da semelhança de triângulos. Nossa intenção

agora é apresentar uma formalização desses conceitos no Caṕıtulo 3 e posteriormente

aplicá-los em uma sequência didática que será desenvolvida no Caṕıtulo 4.
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3 SEMELHANÇA DE TRIÂNGULOS E RELAÇÕES MÉTRICAS

O estudo da semelhança de triângulos é imprescind́ıvel ao estudo das relações métricas.

É através da semelhança de triângulos que conseguimos obter e provar importantes resul-

tados de forma simples e dedutiva. Por isso, neste Caṕıtulo, iremos apresentar de maneira

clara e objetiva tal conceito.

3.1 Feixe de retas paralelas cortadas por uma transversal

Introduziremos agora alguns conceitos básicos com relação as retas paralelas e aos

ângulos que se formam quando essas retas são cortadas por uma outra reta, que chamamos

de reta transversal.

Para dar nomes às retas usamos sempre as letras minúsculas do nosso alfabeto, en-

quanto para nomear os pontos, fazemos uso das letras maiúsculas.

Dizemos que duas ou mais retas de um mesmo plano formam um feixe de retas

paralelas quando, tomadas duas a duas, continuam sendo paralelas. Vejamos na figura

a seguir um feixe de paralelas formado pelas retas r, s e t.

Figura 1 – Feixe de retas paralelas

Fonte: Elaborada pelo autor, 2025.

Dadas as retas r e s, indicaremos o paralelismo entre essas duas retas, usando a

notação: r ∥ s.

3.1.1 Transversal ao feixe

Quando uma reta intersecta ao menos uma das retas de um feixe de retas paralelas,

então ela intersecta todas as outras retas desse feixe. Dizemos que essa reta é transversal

ao feixe de retas paralelas. Vejamos.
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Figura 2 – Feixe de paralelas cortadas por uma transversal

Fonte: Elaborada pelo autor, 2025.

Como podemos observar na figura anterior, as retas p, q, r e s formam um feixe de

retas paralelas e a reta t é uma transversal a esse feixe.

3.1.2 Ângulos formados por um feixe de retas paralelas cortadas por uma transversal

Os ângulos determinados pela intersecção de um feixe de retas paralelas com uma

transversal são classificados em ângulos opostos pelo vértice, ângulos correspon-

dentes, ângulos alternos internos, ângulos alternos externos, ângulos colaterais

internos e ângulos colaterais externos.

Agora, vamos demonstrar cada um desses tipos de ângulos. Para a demonstração

usaremos um feixe com apenas duas retas paralelas e uma transversal, mas a demonstração

é válida para qualquer quantidade de retas, já que todas são paralelas duas a duas.

� Ângulos opostos pelo vértice

Consideremos as retas r e s tal que r ∥ s e t é uma reta transversal às retas r e s.

Conforme a figura a seguir.

Figura 3 – Ângulos formados por retas paralelas em uma transversal.

Fonte: Elaborada pelo autor, 2025.
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Demonstração. Vamos demonstrar que os ângulos opostos pelo vértice α e γ são con-

gruentes.

Como os ângulos α e β são suplementares:

α + β = 180○ ⇒ α = 180○ − β. (3.1)

Analogamente, os ângulos β e γ também são suplementares. Dáı,

β + γ = 180○ ⇒ γ = 180○ − β. (3.2)

Por outro lado, a soma das medidas dos ângulos α, β, γ e δ é igual a 360○. Isto é:

α + β + γ + δ = 360○. (3.3)

Substituindo na equação (3.3) os valores de α e de γ encontrados nas equações (3.1) e

(3.2), respectivamente, obtemos:

(180○ − β) + β + (180○ − β) + δ = 360○ ⇒

180○ + 180○ − β + β − β + δ = 360○ ⇒ β = δ.

Portanto, fica demonstrado que os ângulos opostos pelo vértice β e δ são congruentes.

De forma totalmente análoga, mostra-se que os ângulos opostos pelo vértice α e γ, ξ e θ

e ϵ e η também são congruentes.

Observação 3.1. Dizemos que dois triângulos são congruentes quando todos os lados e

ângulos de um deles forem respectivamente congruentes(iguais) a todos os lados e ângulos

do outro.

O resultado a seguir irá nos auxiliar nas demonstrações dos outros tipos de ângulos

formados pela intersecção de duas paralelas com uma transversal.

Vamos considerar novamente as retas paralelas r e s e a transversal t. Sejam C e D

os pontos de intersecção da reta t com as retas r e s, respectivamente. Tracemos a reta

u perpendicular às paralelas r e s nos pontos A e B de tal modo que a intersecção de u

com t é P , ponto médio do segmento CD.
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Figura 4 – Ângulos formados por duas retas paralelas cortadas por uma transversal.

Fonte: Dante, 2018.

Note que os ângulos AP̂C e BP̂D são congruentes, pois são ângulos opostos pelo

vértice. Por construção, P é ponto médio de CD, logo, CP =PD e os ângulos ϕ e ψ têm

medidas iguais a 90○ cada, uma vez que a reta u é perpendicular as retas r e s.

Portanto, os triângulosAPC eBPD são congruentes pelo caso Lado-Ângulo Adjacente-

Ângulo Oposto (LAAo), e consequentemente os ângulos δ e ξ têm medidas iguais, o

que implica δ = ξ.

� Ângulos correspondentes

Na Figura 4, temos quatro pares de ângulos correspondentes congruentes. Vamos

mostrar agora que α = ϵ.
De fato, note que α + δ = 180○ (pois são ângulos suplementares), do mesmo modo ϵ + ξ

= 180○ (pois também são ângulos suplementares) e δ = ξ (como mostramos anteriormente).

Logo:

α + δ = ε + ξ.

E como δ = ξ, temos

α + δ = ε + δ⇒ α = ε.

Portanto, os ângulos correspondentes α e ϵ são congruentes. Isto é, α = ε.
De forma análoga, mostra-se que os ângulos β e ξ, γ e η, δ e θ são correspondentes.

� Ângulos alternos internos

Vamos demonstrar que γ = ε.
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De fato, os ângulos γ e α são opostos pelo vértice, logo, γ = α. E os ângulos α e ϵ são

correspondentes, isto é, α = ε. Portanto, γ = ε.
De forma análoga, podemos mostrar que o outro par de ângulos alternos internos δ e

ξ também têm medidas iguais, isto é, δ = ξ̂.

� Ângulos alternos externos.

Demonstraremos que os ângulos alternos externos α e η são congruentes. Ora, note que

ε = η (pois são ângulos opostos pelo vértice) e ε = α (pois são ângulos correspondentes).

Logo, conclúımos que α = η.
Analogamente, prova-se que β = θ.

� Ângulos colaterais internos.

Provaremos agora que os ângulos colaterais internos γ e ξ são suplementares, isto é, γ

+ ξ = 180○.
Veja que γ + δ = 180○, pois são ângulos suplementares, ao mesmo tempo em que δ =

ξ, pois são alternos internos. Logo,

γ + ξ = 180○.

Do mesmo modo podemos demonstrar que δ + ε = 180○.

� Ângulos colaterais externos.

Mostraremos agora que os ângulos colaterais externos α e θ são suplementares, ou

seja, α + θ = 180○.
De fato, como α + δ = 180○ e δ = θ, então

α + θ = 180○.

3.2 Teorema de Tales

O Teorema de Tales é um dos resultados mais importantes da geometria plana, este

resultado foi alicerçado na ideia de que, em um mesmo plano, um feixe de retas paralelas

cortadas por duas retas transversais determinam segmentos proporcionais.

Um feixe de retas paralelas é um conjunto de retas não coincidentes e coplanares, ou

seja, é um conjunto retas distintas e que pertencem a um mesmo plano. Ver figura 5.
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Figura 5 – (feixe de retas paralelas)

Fonte: Elaborada pelo autor, 2025.

Na figura a seguir, podemos observar um feixe de retas paralelas cortadas por duas

retas transversais, p e q, que as interceptam nos pontos A, B, C, D e A′, B′, C ′, D′,

respectivamente.

Figura 6 – (feixe de retas paralelas cortadas por duas transversais)

Fonte: Elaborada pelo autor, 2025.

Dizemos que os pontos A e A′ são correspondentes, bem como os pontos B e B′, C e

C ′, D e D′ também são. Do mesmo modo, os segmentos AB e A′B′ são correspondentes.

Assim como BC e B′C ′, igualmente CD e C ′D′.

O resultado que enunciaremos a seguir é o Teorema de Tales. Este teorema nos dirá

como podemos aplicar as proporções entre os segmentos citados anteriormente.

Teorema 3.1. (Tales).Um feixe de paralelas determina, em duas transversais quaisquer,

segmentos proporcionais.

Demonstração. Consideremos um feixe de paralelas e duas transversais como ilustrado

na figura 7.
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Figura 7 – Feixe de paralelas cortadas por duas transversais

Fonte: Dante, 2018.

Suponhamos que exista um segmento u de tal modo que AB = m ⋅ u e CD = n ⋅ u,
onde m e n são números naturais, ou seja, AB e CD são segmentos comensuráveis. Dessa

forma, tomando a razão
AB

CD
, obtemos:

AB

CD
= m ⋅ u
n ⋅ u

= m
n
. (3.4)

Pelos pontos que dividem os segmentos AB e CD em m e n partes congruentes ao

segmento de medida u, podemos traçar retas paralelas ao feixe de modo que os segmentos

A′B′ e C ′D′ ficam divididos em m e n partes iguais a u′, respectivamente. Isto é,

A′B′

C ′D′
= m ⋅ u

′

n ⋅ u′
= m
n
. (3.5)

Das relações (3.4) e (3.5), obtemos:

AB

CD
= m
n
= A

′B′

C ′D′
.

Portanto,

AB

CD
= A

′B′

C ′D′
.

Observação 3.2. É posśıvel provar que a proporção
AB
CD
= A′B′

C′D′
vale também quando

AB, CD, A′B′ e C ′D′ são segmentos incomensuráveis (ver Caminha, p. 127-129).
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3.3 Semelhança de triângulos

Apresentaremos agora o conceito de semelhança entre dois triângulos, além disso,

vamos enfatizar o estudo da congruência de triângulos, que é um assunto muito abor-

dado nos ensinos fundamental e médio. Na próxima seção veremos que a congruência de

triângulos é apenas um caso particular da semelhança de triângulos.

Definição 3.1. Dois triângulos são semelhantes se possuem os três ângulos ordenada-

mente congruentes e os lados homólogos proporcionais.

Na Figura 8, podemos dizer que o triângulo ABC é semelhante ao triângulo DEF?

Figura 8 – Triângulo ABC semelhante ao triângulo DEF .

Fonte: Elaborada pelo autor, 2025.

Por definição, esses dois triângulos devem ter, além dos três ângulos internos congru-

entes, os seus três lados correspondentes proporcionais. Ou seja, existe um número real

positivo k, tal que:

AB

DE
= AC
DF
= BC
EF
= k.

Ao número k damos o nome de razão de semelhança entre os triângulos ABC e DEF ,

nesta respectiva ordem. Também podemos realizar a semelhança entre os triângulos DEF

e ABC, isto é, na ordem inversa, de modo que a razão é 1
k .

Temos informações de proporcionalidade a partir dos lados da Figura 8. Por outro

lado, não temos a convicção de que os três ângulos internos de ambos os triângulos são

congruentes, já que as marcações indicadas pela figura não nos revela isso. Será que

mesmo assim os triângulos ABC e DEF são semelhantes?

A resposta para essa pergunta é sim e o porquê disso será dado na próxima seção,

quando estudarmos os casos de semelhança de triângulos.

Ao longo do texto usaremos várias notações e simbologias, sempre que necessário

chamaremos a atenção para as mesmas. Por exemplo, para indicarmos que o triângulo

ABC é semelhante ao triângulo DEF, escrevemos:

∆ABC ∼ ∆DEF .
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3.4 Casos de semelhança de triângulos

Nesta seção, seguindo as referências (Dante, 2018), (Barbosa, 2012) e (Caminha, 2022),

iremos apresentar os casos de semelhança de triângulos. Em outras palavras, vamos

mostrar que para dois triângulos serem semelhantes não é necessário seguirmos todas as

condições da Definição 3.1. Cada um dos casos de semelhança a seguir nos dirá uma

condição necessária e suficiente para que dois triângulos sejam semelhantes. Vejamos.

� 1º caso de semelhança de triângulos: Lado - Lado - Lado (LLL)

Teorema 3.2. Sejam ABC e DEF dois triângulos, tais que

AB

DE
= BC
EF
= AC
DF

.

Então, ∆ABC ∼ ∆DEF .

Isto é, o caso LLL nos diz que, além dos lados homólogos proporcionais, os dois

triângulos possuem os seus três ângulos internos respectivamente congruentes.

Figura 9 – Caso de semelhança LLL.

Fonte: Dante, 2018.

Demonstração. Seja k o fator de proporcionalidade entre as razões do teorema enun-

ciado, então AB = k⋅DE, BC = k⋅EF e AC = k⋅DF . Sem perda de generalidade,

suponhamos k maior que 1 e sobre o lado AB marquemos o ponto P tal que AP = DE

(por construção). Ver figura 10.
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Figura 10 – Demonstração do caso LLL.

Fonte: Elaborada pelo autor, 2025.

Sobre o lado AC tomemos o ponto Q de tal modo que a reta
←→
PQ é paralela ao lado

BC. Logo, pelo Teorema de Tales, segue que

AQ

AC
= AP
AB
= 1

k
.

O que implica,

AQ

AC
= 1

k
⇒ AQ = 1

k
⋅AC ⇒ AQ =DF.

Agora, tracemos o segmento paralelo ao lado AB, que parte de ponto Q e intersecta o

lado BC no ponto N , formando o paralelogramo BNPQ. Aplicando o teorema de Tales

mais uma vez na figura 10, obtemos

PQ

BC
= BN
BC
= AQ
AC
= 1

k
.

Assim,

PQ

BC
= 1

k
⇒ PQ = 1

k
⋅BC ⇒ PQ = EF.

Portanto, mostramos que

AP =DE, AQ =DF ePQ = EF.

Ou seja, os triângulos APQ e DEF são congruentes pelo caso LLL, o que acarreta

B̂ = AB̂C = AP̂Q =DÊF = Ê.

Do mesmo modo, obtemos Â = D̂ e Ĉ = F̂ .

� 2º caso de semelhança de triângulos: Ângulo - Ângulo (AA)
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Teorema 3.3. Dados os triângulos ABC e DEF , se Â = D̂ e B̂ = Ê, então, os triângulos
são semelhantes.

Demonstração. No ∆ABC

Â + B̂ + Ĉ = 180○. (3.6)

Analogamente, no ∆DEF

D̂ + Ê + F̂ = 180○. (3.7)

Das equações (3.6) e (3.7), obtemos:

Â + B̂ + Ĉ = D̂ + Ê + F̂ .

Mas, por hipótese Â = D̂ e B̂ = Ê. Dáı,

Â + B̂ + Ĉ = D̂ + Ê + F̂ ⇒ Ĉ = F̂ .

Isso mostra que os três ângulos dos dois triângulos são respectivamente congruentes.

Agora, vamos provar que os lados são proporcionais.

Figura 11 – Demonstração do caso AA.

Fonte: Elaborada pelo autor, 2025.

Sobre o lado DE tomamos o ponto G, de modo que DG = AB. A partir do ponto G,

traçamos um segmento paralelo ao lado EF que encontra o lado DF no ponto H, obtendo

assim o triângulo DGH que é congruente ao triângulo ABC, pois BÂC = GD̂H, AB =
DG e AB̂C =DÊF =DĜH. (Observe que os ângulosDÊF eDĜH são correspondentes).

Pelo Teorema de Tales, segue que:

DG

DE
= DH
DF

. (3.8)

Mas, DG = AB e DH = AC, logo, da igualdade (3.8) obtemos

AB

DE
= AC
DF

.

De forma análoga, podemos demonstrar que
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AC

DF
= BC
EF

.

O que prova o teorema.

� 3º caso de semelhança de triângulos: Lado - Ângulo - Lado (LAL)

O teorema a seguir nos diz que se dois triângulos têm dois lados correspondentes pro-

porcionais, e os ângulos compreendidos entre eles são congruentes, então esses triângulos

são semelhantes.

Teorema 3.4. Dados dois triângulos ABC e DEF , se Â = D̂ e
AB

DE
= AC

DF
, então, os

triângulos são semelhantes.

Demonstração. Sejam ABC e DEF dois triângulos, conforme a figura a seguir.

Figura 12 – Demonstração do caso LAL.

Fonte: Elaborada pelo autor, 2025.

Agora, vamos constuir o triângulo GHI de modo que GH = DE, Ĝ = Â e Ĥ = B̂.

Figura 13 – Construção auxiliar para demonstração do caso LAL.

Fonte: Elaborada pelo autor, 2025.

De acordo com o Teorema 3.3, os triângulos ABC e GHI são semelhantes (caso AA).

Então, como consequência dessa semelhança, temos:

AB

GH
= AC
GI

.
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Mas, por construção GH = DE e, por hipótese,
AB

DE
= AC
DF

, o que acarreta

AC

GI
= AC
DF

⇒ GI =DF.

Note que GH = DE (construção), BÂC = ED̂F (hipótese) e GI = DF (semelhança).

Logo, com essas informações conclúımos que os triângulos DEF e GHI são congruentes

pelo caso LAL.

Portanto, o triângulo ABC é semelhante ao triângulo GHI e este, por sua vez, é

congruente ao triângulo DEF , o que implica

∆ABC ∼∆DEF.

E assim fica provado o teorema.

A seguir iremos apresentar três resultados obtidos como consequência da semelhança

entre dois triângulos, são eles: o Teorema 3.5, o Teorema 3.6 e o Teorema 3.6.1.

Teorema 3.5. Sejam ABC e DEF dois triângulos semelhantes com razão de semelhança

k. Se p e p′ são, respectivamente, os peŕımetros desses triângulos, então

p

p′
= k.

Demonstração. Consideremos os triângulos ABC de lados medindo a, b, c e DEF cujas

medidas dos lados são d, e, f .

Sejam p e p′ os respectivos peŕımetros dos triângulos ABC e DEF , então:

p = a + b + c e p′ = d + e + f .

Figura 14 – Triângulos semelhantes de peŕımetros p e p′.

Fonte: Elaborada pelo autor, 2025.

Como ABC e DEF são triângulos semelhantes, temos:

a

d
= b
e
= c
f
= k.
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O que implica,

a

d
= k ⇒ a = k ⋅ d. (3.9)

b

e
= k ⇒ b = k ⋅ e. (3.10)

c

f
= k ⇒ c = k ⋅ f. (3.11)

Substituindo os valores das igualdades (3.9), (3.10) e (3.11) em p = a + b + c, obtemos

p = k ⋅ d + k ⋅ e + k ⋅ f ⇒ p = k ⋅ (d + e + f) ⇒ p = k ⋅ p′ ⇒ p

p′
= k.

Como queŕıamos demonstrar.

Teorema 3.6. Sejam ABC e DEF dois triângulos semelhantes com razão de semelhança

k. Se h e h′ são, respectivamente, as alturas desses triângulos, então

h

h′
= k.

Demonstração. Na figura seguinte temos ABC e DEF dois triângulos semelhantes,

cujas alturas estão respectivamente representas por AH = h e DH ′ = h′.

Figura 15 – Triângulos semelhantes de alturas h e h′.

Fonte: Elaborada pelo autor, 2025.

Note que, por hipótese AB̂C = DÊF e como as alturas AH e DH ′ formam com as

bases BC e EF respectivamente, ângulos retos, então AĤB = DĤ ′E. Logo, os triângulos
ABH e DEH ′ são semelhantes pelo caso AA. Assim,

AB

DE
= BH
EH ′

= AH

DH ′
= k.

O que implica,

h

h′
= k.
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Como queŕıamos demonstrar.

Corolário 3.6.1. Sejam ABC e DEF dois triângulos semelhantes com razão de seme-

lhança k. Se S e S′ denotam, respectivamente as áreas desses triângulos, então

S

S′
= k2.

Demonstração. Como S e S′ são as respectivas áreas dos triângulos ABC e DEF ,

conforme a figura 16:

Figura 16 – Razão entre as áreas de dois triângulos semelhantes.

Fonte: Elaborada pelo autor, 2025.

S = a ⋅ h
2

e S′ = d ⋅ h
′

2

Dáı,

S

S′
=

a ⋅ h
2

d ⋅ h′
2

= a ⋅ h
2
⋅ 2

d ⋅ h′
= a
d
⋅ h
h′
= k ⋅ k = k2.

Como queŕıamos demonstrar.

3.5 Relações métricas no triângulo retângulo

Nesta seção iremos estudar os resultados referentes às relações métricas no triângulo

retângulo. Tais resultados são obtidos por meio da semelhança de triângulos aplicada a

um triângulo retângulo.

Seja ABC um triângulo retângulo, onde BÂC = 90○. Traçando a altura AH, obtemos

dois novos triângulos, ABH e AHC que são semelhantes ao triângulo ABC e também

são semelhantes entre si. Vejamos.
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Figura 17 – Triângulo retângulo no vértice A.

Fonte: Elaborada pelo autor, 2025.

Com essas informações podemos enunciar a proposição a seguir.

Proposição 3.1. Em todo triângulo retângulo, a altura do vértice do ângulo reto é média

geométrica entre as projeções dos catetos sobre a hipotenusa.

Demonstração. Note que os triângulos ABH e AHC são retângulos em H, pois AH é

a altura do triângulo ABC.

Como B̂ + Ĉ = 90○ e B̂ + BÂH = 90○, temos: BÂH = Ĉ.
Do mesmo modo, HÂC + Ĉ = 90○, ou seja, HÂC = B̂.

Portanto, os triângulos ABH e AHC são semelhantes entre si e também são seme-

lhantes ao triângulo ABC. (caso AA). Sendo assim, a semelhança entre os triângulos

ABH e AHC nos fornece:

AB

AC
= AH
CH

= BH
AH

.

O que implica,

c

b
= h
n
= m
h
.

Isto é,

h2 =m ⋅ n

como queŕıamos demonstrar.

3.5.1 Outras relações métricas.

De forma análoga à proposição anterior e considerando agora a semelhança entre

∆ABC e ∆ABH temos:

AB

BH
= AC
AH
= BC
AB

.
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O que é equivalente a,

c

m
= b
h
= a
c
.

Ou seja,

c2 = a ⋅m. (3.12)

Observe agora que da semelhança entre ∆ABC e ∆AHC, temos outra relação.

Ora,

AB

AH
= AC
CH

= BC
AC

.

O que implica,

c

h
= b
n
= a
b
. (3.13)

Dáı,

b2 = a ⋅ n. (3.14)

Em resumo, as relações (3.12) e (3.14) nos diz que, em todo triângulo retângulo, o

quadrado da medida de um dos catetos é igual ao produto da medida da hipotenusa pela

medida da projeção deste cateto.

Ainda, pela expressão (3.13), temos mais uma relação métrica:

a ⋅ h = b ⋅ c. (3.15)

Esta última nos diz que, em todo triângulo retângulo, o produto da medida da hipo-

tenusa pela medida da altura é igual ao produto das medidas dos catetos deste triângulo.

No que segue, vamos apresentar o famoso teorema de Pitágoras, um dos resultados

mais importantes da geometria Euclidiana.

Teorema 3.7. Em todo triângulo retângulo, o quadrado da medida da hipotenusa é igual

a soma dos quadrados das medidas dos catetos.

Demonstração. Para provarmos este teorema basta considerarmos as expressões (3.12)

e (3.14), uma vez que ambas são consequências da semelhança entre os triângulos ABC,

ABH e AHC.

c2 = a ⋅m e b2 = a ⋅ n

De fato, somando membro a membro essas duas expressões e lembrando que m+n = a,
obtemos:
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c2 + b2 = a ⋅m + a ⋅ n⇒ c2 + b2 = a ⋅ (m + n) ⇒ c2 + b2 = a ⋅ a⇒ a2 = b2 + c2.

Como queŕıamos demonstrar.
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4 APLICAÇÃO DE UMA SEQUÊNCIA DIDÁTICA

O desafio de educar, diante das circunstâncias que se apresentam, em especial no con-

texto da Educação Básica, no que se refere à construção de um aprendizado significativo

que propicie ao educando habilidades e condições de adquirir conhecimentos e desenvol-

ver um olhar cŕıtico, reflexivo e dedutivo sobre os entes matemáticos é uma tarefa árdua.

Acompanhar a evolução tecnológica é uma necessidade que acarreta em novas práticas

pedagógicas e que podem tornar o processo de ensino-aprendizagem mais dinâmico, pra-

zeroso e compreenśıvel.

Neste Caṕıtulo iremos nos dedicar a fazer uma análise da aplicação de uma sequência

didática em duas turmas de 9º ano (A e B), no turno da manhã, na Escola Municipal

de Ensino Fundamental Lúıs Ribeiro Coutinho, localizada na cidade de Juarez Távora,

Paráıba. Escola essa, onde trabalho atuando como professor de matemática.

Fizemos uma comparação entre as turmas mencionadas. Na turma A, apresentamos

o conteúdo semelhança de triângulos de forma tradicional e em seguida, utilizamos o

GeoGebra como uma ferramenta didática, onde realizamos atividades de constatação dos

casos de semelhança tais como as apresentadas na Etapa 2 desta sequência didática,

enquanto na turma B abordamos o mesmo assunto apenas do modo tradicional, fazendo

uso de caneta e quadro branco.

Nosso estudo se estrutura em autores que defendem a ideia de que a sequência didática

é uma forma significativa de ensinar, como é o caso de Lisiane Peretti e Antoni Zabala.

Para (Zabala, 1998), as sequências de atividades ou sequências didáticas são um:

“conjunto de atividades ordenadas, estruturadas e articuladas para a realização de certos

objetivos educacionais, que têm um prinćıpio e um fim conhecidos tanto pelos professores

como pelos alunos”

Ou seja, o autor valoriza um ensino organizado, que busque meios de alcançar aquilo

que esperamos. Portanto, trabalhar conteúdos em sala de aula de maneira inovadora,

utilizando tecnologias da educação de forma significativa, organizando o tempo de cada

etapa e avaliando de acordo com os critérios preestabelecidos, são fatores importantes

para um resultado satisfatório.

Segundo o artigo Sequência didática na matemática, (Peretti; Costa, 2013) des-

tacam que:

Assim, uma sequência didática como recurso para resolução de cálculos faz-

se necessária para um melhor entendimento sobre o conteúdo a ser traba-

lhado, contextualizando-o, gerando um ensino integrado com outras disciplinas,

tornando-as com significados que são dados pelas próprias situações didáticas

e pela associação aos problemas reais [Peretti e Costa, 2013, p. 3].

Isto é, a autora defende a ideia de que também podemos utilizar esse momento para
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realização de atividades cujo objetivo seja esclarecer determinadas operações matemáticas

que ainda estão obscuras para os alunos e ao mesmo tempo sugere uma abordagem do

conteúdo de forma que haja significado real para os estudantes.

A aplicação desta sequência didática surgiu motivada pelas inquietações geradas no

ensino de geometria, em particular, no que diz respeito ao ensino de semelhança de

triângulos e suas aplicações no Ensino Fundamental. Além disso, sabemos que atual-

mente professores de todo os ńıveis de ensino estão enfrentando dificuldades para ganhar

a atenção dos alunos em suas aulas, isso se deve, em parte, ao avanço tecnológico global.

Crianças, jovens e até mesmo adultos estão cada vez mais acostumados ao uso das telas,

pensando nisso, vamos fazer uso do software de geometria dinâmica, o GeoGebra, que irá

auxiliar na compreensão e na assimilação desses conteúdos por parte dos estudantes.

4.1 Objeto de conhecimento

� Semelhança de triângulos.

4.2 Objetivo

O objetivo principal desta sequência didática é fazer com que os estudantes sejam capa-

zes de reconhecer as condições necessárias e suficientes para que dois triângulos

sejam semelhantes (EF09MA12), bem como aplicar os principais resultados obtidos da

semelhança entre eles.

4.3 Objetivos espećıficos

� Identificar qual caso de semelhança está sendo aplicado em determinado problema;

� Compreender o conceito de semelhança de triângulos;

� Perceber estes conceitos aplicados em diversas situações do cotidiano escolar e da

sociedade como um todo;

� Ser capaz de calcular a razão de semelhança entre dois triângulos;

� Identificar meios para calcular alturas de objetos a partir da projeção de suas som-

bras;

� Desenvolver estratégias para calcular medidas inacesśıveis;

� Entender que a congruência de triângulos é um caso particular da semelhança de

triângulos.
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4.4 Etapas de desenvolvimento

A presente sequência de atividades está organizada em três etapas básicas, na primeira

delas temos o diagnóstico, onde podemos analisar as dificuldades e os conhecimentos que

os estudantes já possuem. Na segunda etapa temos a utilização do software GeoGebra

e a execução das costruções referentes aos três casos de semelhança feitos através de um

tutorial com o passo a passo para verificação de cada um desses casos, ou seja, aqui

utilizamos meios para que os alunos vivam experiencias reais de forma dinâmica, eficaz e

significativa. Por último, temos a avaliação e as conclusões, onde analisamos o desempenho

entre a turma que fez uso do GeoGebra e a que não fez. Observamos os pontos fracos e

fortes e refletimos sobre a contribuição desse software no processo de ensino-aprendizagem.

A sequência didática em tela, foi desenvolvida e executada em cinco encontros com a

turma do 9º ano A, onde cada encontro equivale a duas horas-aula de quarenta e cinco

minutos cada.

Etapa 1: Semelhança de triângulos

4.4.1 Conhecimentos prévios

“Ao iniciar a sequência didática, é necessário efetuar um levantamento prévio dos

conhecimentos dos alunos e, a partir desses, planejar uma variedade de aulas com desafios

e/ou problemas diferenciados, jogos, análise e reflexão”(Peretti; Costa, 2013).

Ou seja, é o momento de verificar o que os estudantes já sabem a respeito do conteúdo

abordado, nesta etapa pode ser aplicado um teste de sondagem para diagnosticar melhor

os conhecimentos prévios dos alunos. Também vale ressaltar aqui, a importância da

construção/confecção de materiais didáticos por parte dos estudantes. Por exemplo, a

construção de pirâmides feitas com cartolina, papelão ou outros materiais semelhantes é

uma ótima atividade para posteriormente ser utilizada como exemplo de um problema de

medição de alturas inacesśıveis.

No que segue, temos duas questões que foram utilizadas para sondar os conhecimen-

tos prévios dos alunos acerca de conceitos básicos da Geometria Plana, referentes aos

elementos de um triângulo e à semelhança de triângulos.

Exerćıcios

1. Considere o triângulo a seguir.
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Figura 1 – Triângulo ABC.

Fonte: Elaborada pelo autor, 2025.

Responda:

(a) Quantos vértices tem esse triângulo? Quais são eles?

(b) Quantos ângulos internos possui o triângulo? Quais são eles?

(c) Quem são os lados desse triângulo?

(d) Quais são as medidas dos lados desse triângulo? Justifique sua resposta.

(e) Esse triângulo é escaleno? Justifique sua resposta.

(f) O que é um triângulo equilátero? Esse triângulo é isósceles? Justifique.

(g) O que é um triângulo acutângulo?

(h) Quando é que um triângulo é classificado como triângulo retângulo? E ob-

tusângulo?

(i) Quanto vale a soma dos ângulos internos de qualquer triângulo?

(j) Como podemos nomear esse triângulo?

2. Considere os triângulos ABC e DEF , ilustrados na figura a seguir.
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Figura 2 – Triângulos ABC e DEF .

Fonte: Elaborada pelo autor, 2025.

(a) Esses triângulos são semelhantes?

(b) Para que esses dois triângulos sejam semelhantes é necessário que todos os

seus ângulos sejam congruentes e todos os seus lados correspondentes sejam

respectivamente proporcionais?

(c) Se apenas dois ângulos do triângulo ABC forem congruentes a dois ângulos do

triângulo DEF , esses triângulos são semelhantes? Justifique.

(d) Se apenas os três lados do triângulo ABC forem proporcionais aos três lados

do triângulo DEF , isso nos garante que esses triângulos são semelhantes?

Justifique.

(e) Se o triângulo ABC apresenta apenas dois lados proporcionais a dois lados do

triângulo DEF e o ângulo compreendido entre esses dois lados no triângulo

ABC é congruente ao ângulo compreendido entre os dois lados no triângulo

DEF , então esses dois triângulos são semelhantes? Justifique.

De forma resumida, a aplicação desse teste diagnóstico apontou que a maioria dos

estudantes dessa turma, apresentam dificuldades e falta de domı́nio dos entes geométricos.

Mais de 90% não têm segurança em suas falas sobre as respostas do questionário proposto.

Nesse primeiro contato também é apresentado aos estudantes o GeoGebra, estes es-

tudantes tiveram a oportunidade de conhecer as principais ferramentas desse software.

Entre outras coisas, pode-se apresentar aos alunos alguns conceitos como pontos, retas

(paralelas, perpendiculares, concorrentes, bissetrizes, mediatrizes, etc.), poĺıgonos, circun-

ferências, ângulos e muitas outras opções. Veja a figura.
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Figura 3 – Apresentação da interface do software GeoGebra à turma.

Fonte: Print screen do GeoGebra.

Figura 4 – Apresentação do software GeoGebra à turma.

Fonte: Elaborada pelo autor, 2024.

4.4.2 Teorema de Tales

Aqui apresentamos para a turma o Teorema de Tales. Inicialmente retomamos a ideia

de retas paralelas e também de transversal ao feixe. Em seguida, mostramos aos alunos

enunciado formal do Teorema de Tales, a saber:

Teorema 4.1. Um feixe de paralelas determina, em duas transversais quaisquer, segmen-

tos proporcionais.



40

Figura 5 – Teorema de Tales.

Fonte: Elaborada pelo autor, 2025.

Em resumo, o teorema de tales afirma que

AB

BC
= DE
EF.

Nesse momento, sugere-se utilizar o GeoGebra para convencer os alunos de que essas

proporcionalidades entre os segmentos realmente acontecem. Vejamos.

Figura 6 – Abordando o Teorema de Tales no GeoGebra.

Fonte: Elaborada pelo autor, 2024.

� Teste prático: Verificando com o GeoGebra.

– Com o software GeoGebra aberto construa três retas paralelas, r, s e t;

– Construa outras duas retas, u e v, transversais às paralelas;
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– Os pontos de intersecção entre as retas paralelas e as retas transversais nomeie

por A,B,C,D,E e F , respectivamente;

– Com a ferramenta distância clique no ponto A e depois no ponto B, automa-

ticamente aparecerá: AB = 1,2;

– Repita o processo para os segmentos BC,DE e EF .

Figura 7 – Verificação no GeoGebra com os alunos.

Fonte: Elaborada pelo autor, 2025.

Após o término do processo de construção pode-se concluir que:

AB

BC
= DE
EF
⇒ 1,2

1,7
= 1,1

1,5
= 0,7.

Lembrete: o número 0,7 que se obtém da razão entre os segmentos proporcionais

chama-se constante de proporcionalidade.

4.4.3 Triângulos semelhantes

Definição 4.1. Dois triângulos são semelhantes se possuem os três ângulos ordenada-

mente congruentes e os lados homólogos proporcionais.

� Casos de semelhança de triângulos.

1. (LLL) Se dois triângulos quaisquer têm os seus três lados correspondentes direta-

mente proporcionais, então esses triângulos são semelhantes.

2. (AA) Se dois triângulos quaisquer têm dois de seus ângulos internos correspondentes

congruentes, então esses triângulos são semelhantes.
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3. (LAL) Se dois triângulos quaisquer têm dois de seus lados correspondentes di-

retamente proporcionais e se o ângulo compreendido entre esses lados no primeiro

triângulo for congruente ao ângulo compreendido entre os lados no segundo triângulo,

então esses triângulos são semelhantes.

Estes casos de semelhança que acabamos de listar são apresentados aos estudantes sem

suas demonstrações, nosso objetivo aqui é utilizar o software GeoGebra para convencê-

los de que é posśıvel construir um triângulo semelhante a um dado triângulo utilizando

apenas um dos casos de semelhança mencionados. Essas três construções foram feitas em

uma sequência de seis aulas em que para cada construção são destinadas duas horas-aula.

A segunda etapa nos mostra como fazer esse passo a passo.

Etapa 2: Construindo triângulos semelhantes com o uso do GeoGebra.

Esse é o momento de construir triângulos semelhantes, isto é, dado um triângulo

qualquer, como podemos construir outro triângulo semelhante ao primeiro? A resposta

para essa indagação é dada através dos casos de semelhança listados anteriormente.

Faremos agora três construções referentes aos casos mencionados, utilizaremos o Ge-

oGebra como uma ferramenta auxiliadora e facilitadora do entendimento desses critérios

por parte dos estudantes.

� Construção 1. Dado o triângulo ABC, construa o triângulo DEF semelhante ao

primeiro, utilizando apenas o caso (LLL).

Passos:

1. Com o software GeoGebra construa um triângulo ABC qualquer;

2. Com a ferramenta distância, meça o comprimento do lado BC;
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Figura 8 – Triângulo ABC prestes a ter o lado BC medido.

Fonte: Print screen do GeoGebra.

3. Escolha uma constante k. Com a ferramenta segmento de comprimento fixo,

construa o segmento EF de comprimento proporcional ao comprimento do lado BC,

tal que EF = k ⋅BC ;

Figura 9 – Construção do segmento EF proporcional ao lado BC.

Fonte: Print screen do GeoGebra.

4. Em seguida, selecione a opção reta paralela e construa uma reta r paralela ao lado

AB que passa pelo ponto E;
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Figura 10 – Construção da reta paralela r.

Fonte: Print screen do GeoGebra.

5. Com a ferramenta segmento de comprimento fixo, construa sobre a reta r o

segmentoDE, de comprimento proporcional ao lado AB, escolha a mesma constante

k do passo 3;

6. Faça o mesmo com o lado AC, com a ferramenta reta paralela, construa uma reta

s paralela ao lado AC passando pelo ponto F ;

7. Com a ferramenta segmento de comprimento fixo, construa sobre a reta s o

segmento DF , de comprimento proporcional ao lado AC;

8. Denote a intersecção das retas r e s pelo ponto D;
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Figura 11 – Segmentos DE e DF sobre as retas r e s.

Fonte: Print screen do GeoGebra.

9. Agora, com a ferramenta poĺıgono, clique nos pontos D, E e F , formando o

triângulo DEF .

10. Por fim, apague as retas paralelas que foram traçadas para auxiliar na construção.

Faça isso clicando com o botão direito do mouse sobre a reta e depois clique na

opção exibir objeto.

Figura 12 – Triângulo DEF semelhante ao triângulo ABC (caso LLL).

Fonte: Print screen do GeoGebra.
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Agora, vamos justificar o casso AA através da construção 2.

� Construção 2. Dado o triângulo ABC, construa o triângulo DEF semelhante ao

primeiro utilizando apenas o caso AA.

Passos:

1. Com o software GeoGebra, construa um triângulo ABC qualquer;

Figura 13 – Triângulo ABC.

Fonte: Print screen do GeoGebra.

2. Construa o segmento de reta EF de qualquer tamanho utilizando a ferramenta

segmento;

3. Clique na opção girar em torno de um ponto, em seguida, clique no ponto E

e depois sobre o segmento EF . Nesse momento aparecerá uma caixa de diálogo

perguntando a medida do ângulo desejado.

4. Informe a medida do ângulo, que deverá ser a mesma do ângulo AB̂C, ainda na

caixa de diálogo clique na opção sentido anti-horário.
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Figura 14 – Construindo o ângulo Ê = 108,4○.

Fonte: Print screen do GeoGebra.

5. Novamente, clique na ferramenta girar em torno de um ponto, clique no ponto

F e depois sobre o segmento EF . Na caixa de diálogo digite a medida do ângulo

desejado, que deverá ser a mesma do ângulo AĈB. Ainda na caixa de diálogo clique

em sentido horário.

Figura 15 – Ângulos Ê e F̂ depois de constrúıdos.

Fonte: Print screen do GeoGebra.

6. Prolongue o segmento auxiliar FG. Faça isso com a ferramenta semirreta. Trace
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a semirreta r de origem em F que contém G. Na intersecção da semirreta com o

lado oposto marque o ponto D.

Figura 16 – Prolongamento do segmento FG pela semirreta r.

Fonte: Print screen do GeoGebra.

7. Com a ferramenta poĺıgono, clique nos pontos D, E e F , obtendo o triângulo DEF .

8. Finalmente, clique com o botão direito do mouse sobre cada um dos segmentos

auxiliares que formaram os ângulos e, em seguida, clique em exibir objeto, fazendo

com que só reste o triângulo DEF , semelhante ao triângulo ABC pelo caso AA.

9. Ainda, de acordo com a definição de triângulos semelhantes, podemos constatar a

proporcionalidade entre os lados dos triângulos constrúıdos, basta utilizar a ferra-

menta distância para medir cada um dos lados desses triângulos.



49

Figura 17 – Triângulo DEF semelhante ao triângulo ABC (caso AA).

Fonte: Print screen do GeoGebra.

A seguir, temos a última construção que justifica a semelhança entre dois triângulos

pelo caso LAL.

� Construção 3. Dado o triângulo ABC, construa o triângulo DEF semelhante ao

primeiro, utilizando apenas o caso LAL.

Passos:

1. Com o software GeoGebra aberto, desenhe um triângulo ABC qualquer;

2. Na janela 8 clique na opção distância, clique nos pontos B e C a fim de obter a

medida do lado BC;
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Figura 18 – Triângulo ABC com o lado BC sendo medido com a ferramenta distância.

Fonte: Print screen do GeoGebra.

3. Escolha arbitrariamente uma constante de proporcionalidade. Com a ferramenta

segmento com comprimento fixo construa o segmento EF proporcional ao lado

BC, tal que EF = k ⋅BC ;

4. Novamente com a ferramenta segmento com comprimento fixo, construa o seg-

mento ED. Faça isso clicando no ponto E e depois clique sobre o segmento EF , em

seguida digite a medida de comprimento desejada na caixa de diálogo, essa medida

deve ser proporcional ao lado AB;
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Figura 19 – Construção dos segmentos EF e DE proporcionais aos segmentos BC e AB,
respectivamente.

Fonte: Print screen do GeoGebra.

5. Com a ferramenta girar em torno de um ponto, clique no ponto D e em seguida

clique no ponto E, na caixa de diálogo insira a medida do ângulo desejado, que deve

ser a mesma do ângulo AB̂C;

6. Após utilizar a opção girar em torno de um ponto, aparecerá os segmentos DE

e EF e o ângulo DÊF compreendido entre eles, cuja medida é a mesma do ângulo

AB̂C.
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Figura 20 – Segmento DE sendo deslocado 56,3○ no sentido anti-horário em relação ao
segmento EF .

Fonte: Print screen do GeoGebra.

7. Com a ferramenta poĺıgono selecionada, clique nos pontos D, E e F , obtendo o

triângulo DEF semelhante ao triângulo ABC pelo caso LAL.

Figura 21 – Triângulo DEF semelhante ao triângulo ABC pelo caso LAL.

Fonte: Print screen do GeoGebra.

8. Ainda, de acordo com a definição de semelhança entre dois triângulos, pode-se

verificar que os lados do triângulo ABC são respectivamente proporcionais aos lados
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do triângulo DEF .

Etapa 3: Uma aplicação da semelhança de triângulos: Cálculo de alturas

inacesśıveis.

Nessa aula os alunos confeccionaram algumas pirâmides de bases quadrangular, a

turma foi dividida em cinco grupos de cinco e seis alunos e cada grupo fica responsável

por construir o sólido.

Figura 22 – Alunos confeccionando pirâmides.

Fonte: Elaborada pelo autor, 2024.

Um dos objetivos dessa atividade é fazer com que os estudantes tenham uma maior

percepção das formas geométricas tridimensionais. Outro ponto importante é a utilização

dessas pirâmides em uma atividade prática, onde os alunos serão capazes de calcular as

alturas dessas pirâmides utilizando os conhecimentos adquiridos no estudo da semelhança

de triângulos a partir de projeções de sombras.

Atividade Prática Avaliativa

Nesse contexto, aplicamos os conhecimentos de semelhança para realizar uma atividade

prática com a turma, essa tarefa pode ser feita individualmente ou em pequenos grupos.

No nosso caso, vamos realizar as medições das alturas das pirâmides confeccionadas pelos

alunos.

Como as pirâmides constrúıdas foram todas retas, então podemos aplicar os concei-

tos de semelhança e obter uma boa aproximação nos resultados de suas alturas. Dessa

forma, os alunos devem colocar as pirâmides confeccionadas em uma posição que a luz da

lâmpada da sala de aula faça o papel do Sol, também podemos fazer essa simulação com

lâmpada, bocal e fios trazidos de casa. Nesse momento devemos orientar os alunos para

colocarem uma régua verticalmente ao lado da pirâmide, de modo que a luz da lâmpada

também projete a sombra da régua e da pirâmide simultaneamente. Os estudantes pre-

cisam entender que podemos medir metade da base da pirâmide e o comprimento da

sombra projetada pela lâmpada. Do mesmo modo, podemos medir a altura da régua e o
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comprimento de sua sombra. É hora de mostrar aos alunos a representação das sombras

da pirâmide e da régua através de triângulos semelhantes. A próxima Figura exemplifica

uma situação parecida que foi usada como exemplo no quadro, porém as medidas não

estão em proporção.

Figura 23 – Calculando a altura de uma pirâmide.

Fonte: Elaborada pelo autor, 2025.

De acordo com os estudos desenvolvidos ao longo dessa sequência de atividades e

com os conhecimentos prévios dos alunos acerca do assunto, aplicamos as relações de

semelhança entre o triângulo maior e o menor ou vice-versa e obtemos o valor da altura

procurada.

H

2m
= 25m + 15m

4m
⇒ H

2m
= 40m

4m
⇒ 4H = 80m⇒H = 20m.

4.5 Conclusão

De acordo com o que foi analisado na aplicação desta sequência didática, pode-se

notar que, atrair a atenção dos alunos está sendo um desafio cada vez maior, é evidente

a dificuldade de concentração dos jovens na sala de aula. Fazendo-se uso do software

GeoGebra, notamos inicialmente uma maior concentração dos alunos, porém, após os

primeiros dez minutos de aula, em média, percebe-se o ińıcio da desconcentração dos

mesmos.

Entretanto, quando paramos para observar e comparar o desempenho de aprendizado

e fixação das ideias entre a turma que foi trabalhada com o software e a turma que não fez

uso do GeoGebra, podemos concluir que esta ferramenta educacional proporciona grandes

avanços no ensino da Geometria, como por exemplo a visualização de figuras como um

todo e também das partes que as constituem: pontos, retas, ângulos, segmentos, etc.
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Na (BNCC, 2018), especificamente em suas competências gerais 4 e 5, é ressaltado o

uso das tecnologias como uma prática que incentiva a modernização dos recursos:

4. Utilizar diferentes linguagens – verbal (oral ou visual-motora, como Libras,

e escrita), corporal, visual, sonora e digital –, bem como conhecimentos das

linguagens art́ıstica, matemática e cient́ıfica, para se expressar e partilhar in-

formações, experiências, ideias e sentimentos em diferentes contextos e produzir

sentidos que levem ao entendimento mútuo. (Base Nacional Comum Curricu-

lar).

5. Compreender, utilizar e criar tecnologias digitais de informação e comu-

nicação de forma cŕıtica, significativa, reflexiva e ética nas diversas práticas

sociais (incluindo as escolares) para se comunicar, acessar e disseminar in-

formações, produzir conhecimentos, resolver problemas e exercer protagonismo

e autoria na vida pessoal e coletiva. (Base Nacional Comum Curricular).

Dessa forma, temos a convicção de que o uso do GeoGebra nas aulas de matemática

desempenha o seu papel de forma brilhante, contribuindo significativamente para bem

comum dos nossos alunos. Notamos essa contribuição fortemente quando comparamos o

desempenho entre as turmas A e B envolvidas neste trabalho.

Os alunos da turma A que vivenciaram as experiências concretas com o uso do GeoGe-

bra demonstraram melhor rendimento e engajamento nas atividades realizadas, enquanto

a turma B não demonstrou muito interesse e envolvimento com as atividades.
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5 ALGUNS BELOS PROBLEMAS DE GEOMETRIA

Neste Caṕıtulo, seguindo as referências de autores como (Iezzi, 2013), (Oliveira, 2017),

(Caminha, 2022) e referências internacionais voltadas a problemas oĺımpicos como (Hang;

Wang, 2017) e o livro entitulado por Geometŕıa Uma Visión de La Planimetŕıa... (2014)

(Geometŕıa, 2014)), abordamos resultados importantes da geometria plana e os apresen-

tamos de forma detalhada, explicitando as etapas das demonstrações por meio de figuras.

Veremos alguns problemas de geometria que em geral não são apresentados em livros

didáticos da educação básica. Mais precisamente, iremos nos dedicar aos teoremas das

bissetrizes internas e externas e aos teoremas de Ceva, Menelaus e suas aplicações. Os

resultados apresentados neste caṕıtulo foram utilizados em uma oficina preparatória para

a Olimṕıada Paraibana de Matemática (OPM) em Setembro de 2024.

5.1 Teorema da Bissetriz Interna

Veremos a seguir um importante resultado da geometria, o teorema da bissetriz interna.

Com este resultados podemos resolver vários problemas de matemática, tanto nas salas

de aulas quanto em outras ocasiões como cursos, oficinas e formações que são voltados

para a resolução de problemas.

Teorema 5.1. (Bissetriz Interna) Uma bissetriz interna de um triângulo, divide o

lado oposto em segmentos (aditivos) proporcionais aos lados adjacentes.

Demonstração. Consideremos o triângulo ABC como mostra a figura a seguir.
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Figura 1 – Teorema da Bissetriz Interna.

Fonte: Oliveira, 2017.

No prolongamento do lado AB, tomemos o ponto E de tal modo que o segmento

CE//AD. Note que o segmento BE é transversal em relação às paralelas AD e CE, o

que implica,

∡BÂD = ∡BÊC = θ.

Por outro lado, o segmento AC também é transversal em relação às paralelas AD e

CE, ou seja,

∡CÂD = ∡AĈE = θ.

Observe que o triângulo ACE é isósceles de base CE, isto é, o lado AC = AE = b.

Aplicando o teorema de Tales no triângulo BCE, temos:

BD

DC
= BA
AE
⇒ m

n
= c
b
.

Como queŕıamos demonstrar.

Teorema 5.2. (Bissetriz Externa). Seja o triângulo ABC tal que AB ≠ AC. Se a

bissetriz de um ângulo externo desse triângulo intercepta a reta que contém o lado oposto,

então ela divide este lado oposto externamente em segmentos (subaditivos) proporcionais
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aos lados adjacentes.

Demonstração. Consideremos o triângulo ABC descrito no enunciado, conforme a fi-

gura.

Figura 2 – Teorema da Bissetriz Externa.

Fonte: Oliveira, 2017.

Na figura, AD é uma bissetriz externa que divide o ângulo ∡CÂE em duas partes

iguais. Sobre o lado BA tomamos o ponto F de tal modo que o segmento FC // AD.

Dáı, temos:

∡AF̂C = ∡EÂD = ∡CÂD = ∡AĈF.

Ou seja, como ∡AF̂C = ∡AĈF , o triângulo AFC é isósceles de base FC, implicando

AC = AF = b.

Agora, aplicando o Teorema de Tales no triângulo ABD, obtemos:

BD

CD
= BA
FA
⇒ m

n
= c
b
.

Como queŕıamos demonstrar.

Exemplo 5.1. No triângulo ABC da figura abaixo, AS é a bissetriz interna do ângulo

BÂC e AP é a bissetriz externa do suplemento desse ângulo. Calcule a medida do

segmento SP .
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Figura 3 – Bissetriz Interna e Externa.

Fonte: Oliveira, 2017.

solução: Considere as medidas indicadas na figura.

Figura 4 – Dados do problema da Bissetriz Interna e externa.

Fonte: Oliveira, 2017.

Aplicando o teorema da bissetriz interna ao triângulo ABC, temos:

30 − x
x
= 40

20
⇒ 40x = 600 − 20x⇒ 60x = 600⇒ x = 10.

Aplicando o teorema da bissetriz externa a esse mesmo triângulo, obtemos:

30 + y
y
= 40

20
⇒ 40y = 600 + 20y⇒ 20y = 600⇒ y = 30.

Note que, SP = x + y ⇒ SP = 10 + 30 = 40.

Exemplo 5.2. Em um triângulo ABC, tem-se ∡BÂC = 36○ e AB = AC = a. Mostre
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que

BC = (
√
5 − 1
2
)a.

Solução: Como o triângulo ABC é isósceles, temos

∡AB̂C = ∡AĈB = 72○.

Traçando a bissetriz BD relativa ao ângulo AB̂C, a qual intercepta o lado AC em D.

(ver figura).

Figura 5 – Bissetriz Interna.

Fonte: Elaborada pelo autor, 2025.

Observe que ∡AB̂C = 72○ e como BD é Bissetriz, segue que

∡AB̂D = ∡CB̂D = ∡BÂC = 36○.

Logo, o triângulo ABD é isósceles de base AB, isto é, AD = BD = x. Por outro lado, o

ângulo BD̂C é ângulo externo do ∆ABD, ou seja,

∡BD̂C = ∡AB̂D +∡BÂC = 72○ = ∡AĈB.
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Dáı, o triângulo BCD é isósceles de base CD e consequentemente BC = BD = AD = x.
Como AC = AD+CD resulta que CD = AC −AD. Ou seja, CD = a−x. Agora, aplicando
o teorema da bissetriz interna no triângulo ABC, obtemos:

a − x
x
= x
a
⇒ x2 = a2 − ax⇒ x2 + ax − a2 = 0.

Resolvendo esta equação do 2º grau na incógnita x, encontramos como solução

x = −a + a
√
5

2
.

Como x = BC e colocando a em evidência chegamos a

BC = (
√
5 − 1
2
)a.

Exemplo 5.3. (OCM). Seja ABC um triângulo tal que, AB = c, AC = b e BC = a. Se
AB̂C = 2AĈB, mostre que b2 = c(a + c).

Solução: Tome o ângulo AĈB = θ e BD bissetriz interna de AB̂C. Como AB̂C = 2θ,
tem-se DB̂C = θ.

Figura 6 – Triângulo ABC com Bissetriz Interna BD.

Fonte: (Olimṕıada Cearense de Matemática - OCM).

Pelo teorema do ângulo externo, AD̂B = DB̂C +BĈD = 2θ. Note que os triângulos

ABD e ABC são semelhantes pelo caso AA (o ângulo Â é comum aos dois triângulos

enquanto os ângulos AD̂B e AB̂C são congruentes e iguais a 2θ.

A semelhança entre os triângulos ABD e ABC nos fornece:

AD

AB
= AB
AC
⇒ x

c
= c
b
.
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Isto é,

x = c
2

b
. (5.1)

Tomando AD = x, como AC = AD + CD, tem-se que CD = AC − AD ⇒ CD = b − x.
Aplicando o teorema da bissetriz interna ao triângulo ABC, obtemos

AB

BC
= AD
CD
⇒ c

a
= x

b − x
⇒ ax = c(b − x) ⇒ ax + cx = bc.

Logo,

x = bc

a + c
. (5.2)

Das expressões (5.1) e (5.2), conclúımos que,

c2

b
= bc

a + c
⇒ b2c = c2a + c3⇒ b2 = c

2a + c3
c

⇒

b2 = c(a + c).

E isso mostra o resultado.

Teorema 5.3 (Ceva). Seja ABC um triângulo qualquer e sejam D,E e F respectiva-

mente pontos sobre os lados AB, AC e BD respectivamente. Então, os segmentos AD,

BE e CF são concorrentes, se e somente se,

AF

BF
⋅ BD
CD
⋅ CE
AE
= 1.

(⇒) Suponhamos que os segmentos AD, BE e BF são concorrentes em P. Ver figura

abaixo.

Figura 7 – Teorema de Ceva

Fonte: Oliveira, 2017.
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Observe inicialmente que os triângulos retângulos BH1D e CH2D são semelhantes,

pelo (caso AA). Assim,
BH1

BD
= DH2

DC
⇒ BH1

DH2

= BD
DC

.

Como BH1//CH2, denotamos a razão entre as áreas de ABP e ACP por:

[ABP ]
[ACP ]

=
1
2AP ⋅BH1

1
2AP ⋅CH2

= BH1

CH2

= BD
CD

.

Logo,
[ABP ]
[ACP ]

= BD
CD

. (5.3)

De maneira análoga, obtemos

[CBP ]
[ABP ]

= CE
AE

e
[ACP ]
[BCP ]

= AF
BF

. (5.4)

De (5.3) e (5.4), e multiplicando membro a membro, obtemos

AF

BF
⋅ BD
CD
⋅ CE
AE
= [ACP ]
[BCP ]

⋅ [ABP ]
[ACP ]

⋅ [CBP ]
[ABP ]

= 1.

Demonstração. (⇐) Suponhamos que AF
BF
⋅BD
CD
⋅CE
AE
= 1. Suponhamos, por absurdo, que as

cevianas AD, BE e CF não são concorrentes. Suponhamos que AD e BE se interceptam

no ponto P, enquanto CF não passa por P. Seja F ′ o ponto de intersecção de CP com

AB, então como as retas
←→
AD,

←Ð→
BE,

←Ð→
CF ′ são concorrentes em P, temos

AF ′

BF ′
⋅ BD
CD
⋅ CE
AE
= 1. (5.5)

Como
AF

BF
⋅ BD
CD
⋅ CE
AE
= 1. (5.6)

A partir de (5.5) e (5.6), obtemos:

AF ′

BF ′
= AF
BF

e portanto, F = F ′, como queŕıamos demonstrar.

No que segue, apresentamos um resultado muito famoso que o Teorema de Ceva na

forma trigonométrica.

Teorema 5.4 (Teorema de Ceva na forma trigonométrica). As cevianas AX,BY,CZ
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do triângulo ABC são concorrentes se e somente se

sen∠BAX
sen∠XAC

⋅ sen∠CBY
sen∠Y BA

⋅ sen∠ACZ
sen∠ZCB

= 1.

Figura 8 – Teorema de Ceva na forma trigonométrica

Fonte: Elaborada pelo autor, 2025.

Demonstração. Usando a lei dos senos e o fato de que os senos de ângulos suplementares

são iguais, obtemos

sen∠BAX
sen∠XAC

=
BX
BA ⋅ sen∠BXA
XC
CA ⋅ sen∠CXA

= BX
XC
⋅ CA
AB

.

De forma análoga chegamos ao mesmo resultado para

sen∠CBY
sen∠Y BA

= CY
Y A
⋅ AB
BC

sen∠ACZ
sen∠ZCB

= AZ
ZB
⋅ BC
CA

.

Agora obtemos o produto parcialmente telescópico

sen∠BAX
sen∠XAC

⋅ sen∠CBY
sen∠Y BA

⋅ sen∠ACZ
sen∠ZCB

= (BX
XC
⋅ CA
AB
) ⋅ (CY

Y A
⋅ AB
BC
) ⋅ (AZ

ZB
⋅ BC
CA
) =

= (BX
XC
⋅ CY
Y A
⋅ AZ
ZB
) ⋅ (CA

AB
⋅ AB
BC
⋅ BC
CA
) =

= BX
XC
⋅ CY
Y A
⋅ AZ
ZB

.



65

O teorema de Ceva afirma que AX,BY,CZ são concorrentes se e somente se

BX

XC
⋅ CY
Y A
⋅ AZ
ZB
= 1,

como queŕıamos demonstrar.

Exemplo 5.4. Em um triângulo ABC o ponto D ∈ BC. Se DE é a bissetriz do ângulo

AD̂C e intercepta AC no ponto E. Traçando DF�DE e interceptando AB em F. Mostre

que, AD, BE e CF são concorrentes.

Solução: Como DE é a bissetriz do ângulo AD̂C e DF�DE, DF é a bissetriz do ângulo

AD̂B (prove isso!).

Figura 9 – DF é a bissetriz do ângulo AD̂B

Fonte: Elaborada pelo autor, 2025.

Pelo Teorema da Bissetriz Interna, aplicado aos triângulos ABD e ACD, obtemos

AF

BF
= AD
BD

e
AE

CE
= AD
CD

.

Como
AF

BF
⋅ BD
CD
⋅ CE
AE
= AD
BD
⋅ BD
CD
⋅ CD
AD
= 1.

Pelo Teorema de Ceva, resulta que AD, BE e CF são concorrentes.

Exemplo 5.5 (IME 1988). Sobre os catetos AB = c e AC = b de um triângulo retângulo

ABC, com AC = a, constroem-se dois quadrados ABDE e ACFG. Mostre que os seg-

mentos CD, BF e a altura AH são concorrentes.

Solução: Vamos usar a figura abaixo para facilitar o entendimento
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Figura 10 – Construção dos dois quadrados.

Fonte: Oliveira, 2017.

Observe inicialmente que os triângulos retângulos ACH e BCA são semelhantes, pelo

(caso AA). Dáı, obtemos

HC

AC
= AC
BC
⇒ HC

b
= b
a
⇒HC = b

2

a
e HB = c

2

a
.

Assim,

HC = b
2

a
e HB = c

2

a
.

Logo,

HB

HC
=

c2

a
b2

a

. (5.7)

Como os triângulos retângulos BY A e BFG são semelhantes, pelo (caso AA), obtemos

Y A

FG
= AB
GB
⇒ Y A = bc

a + b
.

Desde que, CY + Y A = b temos CY = b2

a+b . Assim,

Y A = bc

a + b
e CY = b2

a + b
.
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Logo,

CY

Y A
=

b2

a+b
bc
a+b

. (5.8)

Novamente, usando o fato que os triângulos retângulos CXA e CDE são semelhantes,

temos:
AX

ED
= CA
CE
⇒ AX = bc

b + c
.

Como AX +XB = c temos XB = c2

b+c . Assim,

AX = bc

b + c
e XB = c2

b + c
.

Logo,
AX

XB
=

bc
b+c
c2

b+c
. (5.9)

Multiplicando membro a membro, (5.9), (5.7) e (5.8), obtemos

AX

XB
⋅ BH
HC
⋅ CY
Y A
=

bc
b+c
c2

b+c
⋅
c2

a
b2

a

⋅
b2

a+b
bc
a+b
= 1.

Dáı e do Teorema de Ceva, resulta que os segmentos DC, EF e AH são concorrentes.

Observação 5.1 (Cálculo de área de um triângulo). Se ABC é um triângulo, então a

área do triângulo ABC, a qual é denotada por [ABC] é dada por

[ABC] = (AB) ⋅ (AC) ⋅ sen Â
2

.

O resultado é análogo para os outros ângulos.

Figura 11 – Cálculo da área do triângulo

Fonte: Elaborada pelo autor, 2025.
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De fato, temos

[ABC] = (AC) ⋅ h
2

e sen Â = h

AB
.

Destas duas igualdades o resultado segue.

Exemplo 5.6. Em um triângulo ABC, desenha-se os triângulos equiláteros ABF, BCD

e ACE cujas bases estão sobre os lados AB, BC e AC respectivamente. Mostre que os

segmentos AD, BE e CF são concorrentes.

Solução: Vamos considerar a figura abaixo para ajudar no entendimento.

Figura 12 – Construção de três triângulos equiláteros.

Fonte: Hang; Wang, 2017.

Temos uma aplicação do Teorema de Ceva. Digamos que, AD intercepta BC no ponto

P, BE intercepta AC no ponto Q e CF intercepta AB no ponto R. Queremos mostrar

que:
BP

CP
⋅ CQ
AQ
⋅ AR
BR
= 1.

Dáı, pelo Teorema de Ceva, os segmentos: AP, BQ e CR são concorrentes e portanto, os

segmentos AD, BE e CF são concorrentes.

Note que,

[ABP ] = (BP ) ⋅ h
2

e [ACP ] = (PC) ⋅ h
2

. (5.10)
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Por (5.10), podemos escrever

BP

PC
=
(BP )⋅h

2

(PC)⋅h
2

= [ABP ]
[ACP ]

. (5.11)

Raciocinando da mesma maneira, obtemos

BP

PC
= [BDP ]
[CDP ]

. (5.12)

Logo, de (5.11) e (5.12), obtemos:

BP

PC
= [ABP ]
[ACP ]

= [BDP ]
[CDP ]

. (5.13)

Pelas propriedades das proporções e (5.13), obtemos:

[ABP ]
[ACP ]

= [BDP ]
[CDP ]

⇒ [BDP ]
[CDP ]

= [ABP ] + [BDP ]
[ACP ] + [CDP ]

= [ABC]
[ACD]

o que implica
BP

PC
= [ABC]
[ACD]

. (5.14)

Note que,

AB̂D = AB̂C + 60○, AĈD = AĈB + 60○ e BÂE = BÂC + 60○.

Destes fatos e da Observação (5.1), obtemos

[ABC] = 1

2
[(AB) ⋅ (BD) ⋅ senAB̂D] = 1

2
[(AB) ⋅ (BD) ⋅ sen (AB̂C + 60○)] (5.15)

e

[ACD] = 1

2
[(AC) ⋅ (CD) ⋅ senAĈD] = 1

2
[(AC) ⋅ (CD) ⋅ sen (AĈB + 60○)] (5.16)

Como BD = CD, (pois são lados do triângulo equilátero BCD) de (5.14), (5.15) e (5.16),

resulta que

BP

CP
= [ABD]
[ACD]

=
1
2[(AB) ⋅ (BD) ⋅ sen (AB̂C + 60○)]
1
2[(AC) ⋅ (CD) ⋅ sen (AĈB + 60○)]

=

= (AB) ⋅ sen (AB̂C + 60
○)

(AC) ⋅ sen (AĈB + 60○)
.
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Portanto,
BP

CP
= (AB) ⋅ sen (AB̂C + 60

○)
(AC) ⋅ sen (AĈB + 60○)

. (5.17)

De forma análoga, obtemos:

CQ

AQ
= (BC) ⋅ sen (AĈB + 60

○)
(AB) ⋅ sen (BÂC + 60○)

(5.18)

e
AR

BR
= (AC) ⋅ sen (BÂC + 60

○)
(BC) ⋅ sen (AB̂C + 60○)

. (5.19)

Multiplicando (5.17), (5.18) e (5.19), membro a membro e cancelando os termos comuns

no segundo membro, obtemos

BP

CP
⋅ CQ
AQ
⋅ AR
BR
= 1.

Portanto, pelo Teorema de Ceva, os segmentos: AP, BQ e CR são concorrentes e conse-

quentemente, os segmentos AD, BE e CF são concorrentes.

5.2 Teorema de Menelaus

O Teorema foi enunciado originalmente por Menelau de Alexandria por volta do ano

100 a.C. e demonstrado pelo matemático italiano Giovanni Ceva em 1678.

Teorema 5.5 (Menelaus). Sejam ABC um triângulo e D ∈
←→
AB, E ∈

←→
AC e F ∈

←→
BC.

Então, os pontos D,E e F estão alinhados se, e somente se,

AD

BD
⋅ BE
EC
⋅ CF
FA
= 1.

Demonstração. (⇒) Suponhamos que os pontos D,E e F estão alinhados. Traçamos

por A, B e C as alturas respectivas aos triângulos AFD, BDE e CFE, as quais são as

alturas relativas aos vértices A, B e C destes triângulos, as quais são denotadas por: ha,

hb e hc respectivamente. Assim, ha = AM, hb = BP e hc = CN. Ver figura abaixo:
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Figura 13 – Teorema de Menelaus

Fonte: Oliveira, 2017.

Como as alturas são perpendiculares, resulta que AM, BP e CN são perpendiculares

à reta que passa pelos pontos M,F,N,E,P e D respectivamente. Então, esses três seg-

mentos são paralelos. Portanto, os triângulos AMD é semelhante ao triângulo BPD, os

triângulos BPE é semelhante ao triângulo CNE e os triângulos AMF é semelhante ao

triângulo CNF.

● △AMD ∼ △BPB, tem-se:
AD

BD
= ha
hb

(5.20)

● △BPE ∼ △CNE, tem-se:
BE

EC
= hb
hc

(5.21)

● △AMF ∼ △CNF, tem-se:
CF

FA
= hc
ha

(5.22)

Multiplicando membro a membro (5.20), (5.21) e (5.22), obtemos

AD

BD
⋅ BE
EC
⋅ CF
FA
= ha
hb
⋅ hb
hc
⋅ hc
ha
= 1.

(⇐) Suponhamos que AD
BD
⋅ BE
EC
⋅ CF
FA
= 1. Suponhamos que a reta

←Ð→
ED intercepta o lado AC

no ponto F ′. Pela ida do Teorema de Menelaus, obtemos

AD

BD
⋅ BE
EC
⋅ CF

′

F ′A
= 1. (5.23)

Agora, usando a hipótese que AD
BD
⋅ BE
EC
⋅ CF
FA
= 1 e (5.23), obtemos

F ′A

CF ′
= FA
CF
⇒ F = F ′.
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Portanto, os pontos D, E e F estão alinhados.

Observação 5.2. (i) A demonstração do teorema de Menelaus foi dada quando a trans-

versal corta dois lados e o prolongamento de um terceiro lado do triângulo. Porém, a

demonstração continua válida quando a transversal corta o prolongamento dos três lados.

(ii) O teorema de Menelaus não é válido se um dos pontos D, E e F pertencer à interseção

de um par dessas retas.

Exemplo 5.7. No triângulo ABC, seja D ∈ AB, tal que, AD
AC
= AC

AB
= 2

3 . O ponto médio de

CD é denotado porM. Supomos que as retas
←Ð→
AM e

←→
BC se interceptam em E. Determine

CE
BE
.

Solução: De acordo com o teorema de Menelaus aplicado à reta
←→
AE que intercepta o

triângulo BCD temos:

Figura 14 – M é ponto médio de CD

Fonte: Elaborada pelo autor, 2025.

CE

BE
⋅ BA
DA
⋅ DM
CM

= 1. (5.24)

Usando o fato que
BA

AC
= 3

2
,
AC

AD
= 2

3

e que M é ponto médio de BC, resulta que:

BA

DA
= BA
AC
⋅ AC
DA
= (3

2
)
2

= 9

4
e
DM

CM
= 1. (5.25)

Substituindo (5.25) em (5.24), obtemos:

CE

BE
⋅ 9
4
⋅ 1 = 1⇒ CE

BE
= 4

9
.
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Portanto, CE
BE
= 4

9 .

Exemplo 5.8. Em um triângulo isósceles de base AC se traçam as bissetrizes internas

AM, BL e a bissetriz externa CN. Calcule a ∡ML̂N.

Solução: Vamos considerar a figura abaixo para facilitar o entendimento.

Figura 15 – Aplicação do teorema de Menelaus.

Fonte: Elaborada pelo autor, 2025.

Note inicialmente que AL = LC = a, pois o triângulo BAC é isósceles, a bissetriz BL

é também mediana relativa a base AC.

No triângulo ABC, pelo teorema da bissetriz interna, temos

BM

MC
= AB
AC
= l

2a
. (5.26)
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No triângulo ABC, pelo teorema da bissetriz externa, temos:

BN

AN
= BC
AC
= l + n

n
. (5.27)

De (5.26) e (5.27), resulta que
l

2a
= l + n

n
. (5.28)

Aplicando o Teorema de Menelaus ao triângulo ABC, sendo interceptado pelo segmento

de reta NM, o qual intercepta o lado AC em L e o lado BC em M e por (5.28), obtemos:

BN

NA
⋅ AL
LC
⋅ CM
MB

= ( l + n
n
) ⋅ a
a
⋅ (2a

l
) = l + n

n
⋅ n

l + n
= 1.

Portanto, pelo o teorema de Menelaus, os pontos N,L e M estão alinhados e consequen-

temente, a medida do ∡ML̂N = 180○.
O próximo resultado é um Corolário do Teorema de Tales.

Corolário 5.5.1 (Corolário de Tales). Seja ABC um triângulo, com D ∈ AB e E ∈ AC
respectivamente, tal que, DE//BC. Então,

DE

BC
= AD
AB

.

Figura 16 – DE é paralelo a BC

Fonte: Elaborada pelo autor, 2025.
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A prova deste corolário é obtida através da semelhança entre os triângulos ABC e

ADE.

Exemplo 5.9 (Estados Unidos 2011). SejaABC um triângulo acutângulo não isósceles,

onde AD, BE, CF são alturas e H é o ortocentro. Os segmentos AD e EF se interceptam

em S e AP�EF em P e HQ�EF em Q. Se os segmentos DP e QH se interceptam em

R, mostre que HQ =HR.

Solução: Para a prova usaremos o Teorema de Menelaus. Considere as Figuras abaixo:

Figura 17 – Dados do problema

Fonte: Elaborada pelo autor, 2025.

Aplicando o Teorema de Menelaus ao triângulo AHC e o segmento EF, temos:
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Figura 18 – Aplicação do teorema de Menelaus ao triângulo AHC

Fonte: Elaborada pelo autor, 2025.

AS

HS
⋅ HF
CF
⋅ CE
AE
= 1. (5.29)

Considere o triânguloDPA. Como AP //QR (ver Figura Figura18), pela Observação 5.5.1,

obtemos:
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Figura 19 – Triângulo DPA.

Fonte: Elaborada pelo autor, 2025.

HR

AP
= HD
AD

.

Note que os triângulos SQH e SPA, são semelhantes, (ver figura baixo)
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Figura 20 – Triângulos semelhantes SQH e SPA.

Fonte: Elaborada pelo autor, 2025.

pelo caso AAA, pois AP //QR e portanto,

HR

AP
= HS
AS

.

Afirmação: HS
AS
= HD

AD
implica HQ

AP
= HR

AP
e portanto, HQ =HR.

Por (5.29) é suficiente mostrar que

AD

HD
⋅ HF
CF
⋅ CE
AE
= 1, (5.30)

pois
AS

HS
⋅ HF
CF
⋅ CE
AC
= AD
HD

⋅ HF
CF
⋅ CE
AE
⇒ AS

HS
= AD
HD

⇒ HS

AS
= HD
AD

.

Mostrando (5.30), obtemos a afirmação.

Sejam S1 = [ABH], S2 = [BCH] e S3 = [ACH]. Ver Figura abaixo:
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Figura 21 – Triângulos S1 = [ABH], S2 = [BCH] e S3 = [ACH]

Fonte: Elaborada pelo autor, 2025.

Temos:

AD

HD
=

AD⋅(BC)
2

HB⋅(BC)
2

= [ABC]
[BHC]

= S1 + S2 + S3

S2

,

HF

CF
=

HF ⋅(AB)
2

CF ⋅(AB)
2

= [AHB]
[ABC]

= S1

S1 + S2 + S3

.

Observe que ∡CÊH = 90○, pois BE é a altura relativa ao vértice B do triângulo ABC,

porque H é o ortocentro do triângulo. Assim, obtemos:

S2 = [BHC] =
EC ⋅BH

2
e S1 = [ABH] =

AE ⋅BH
2

o que implica
EC

AE
= S2

S1

.

Logo,
AD

HD
= S1 + S2 + S3

S2

,
HF

CF
= S1

S1 + S2 + S3

e
CE

AE
= S2

S1

. (5.31)

Multiplicando membro a membro cada termo de (5.31), obtemos:

AD

HD
⋅ HF
CF
⋅ CE
AE
= S1 + S2 + S3

S2

⋅ S1

S1 + S2 + S3

⋅ S2

S1

= 1.
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No que segue, deixamos uma lista de atividades das quais a maioria está dispońıvel em

www.obm.org.br, onde os professores podem utilizar para trabalhar com seus alunos.

5.3 Exercićıos propostos

Exerćıcio 5.1. Em um triângulo ABC, traça a bissetriz BD e uma ceviana AE, tal que,

são perpendiculares em F e se traça uma ceviana CG, que contém F e DC = 2(AD).
Calcule CF

FG
.

Exerćıcio 5.2. Seja ABC um triângulo. Se AD é a bissetriz do ângulo AB̂C e intercepta

BC no ponto D, mostre que BD = ac
b+c , onde BC = a, AC = b e AB = c.

Exerćıcio 5.3 (Teorema de Ceva na forma trigonométrica). Seja ABC um triângulo

com D ∈ AB, E ∈ AC e F ∈ AB. Se AD, BE e CF são concorrentes, mostre que

sen θ1
sen θ2

⋅ sen θ3
sen θ4

⋅ sen θ5
sen θ6

= 1.

Figura 22 – Teorema de Ceva na forma trigonométrica

Fonte: Elaborada pelo autor, 2025.

Exerćıcio 5.4. Usando o teorema de Ceva na forma trigonométrica, mostre que as alturas

de um triângulo são concorrentes.

Exerćıcio 5.5. Mostre que as três medianas de um triângulo ABC são concorrentes.

Exerćıcio 5.6. Seja ABC um triângulo com baricentro G. Os pontos M ∈ AB e N ∈ AC
são, tais que, o segmento MN passa por G. Mostre que:

AM ⋅CN +AN ⋅BM = AM ⋅AN.
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Exerćıcio 5.7. Seja ABC um triângulo dado. A bissetriz do ângulo Â corta BC em D.

As bissetrizes de AD̂B e AD̂C intersectam AB e AC nos pontos E e F respectivamente.

Suponhamos que os segmentos de reta BC e EF se intersectam no ponto P. Mostre que,

AP�AD.

Exerćıcio 5.8 (Bulgária 2009). O ćırculo inscrito em um triângulo ABC tem I como

centro e é tangente aos lados BC, CA, AB em A1, B1, C1 respectivamente. Seja d uma

reta que passa por I, e A′, B′, C ′ sejam os respectivos pontos simétricos de A1, B1, C1

em relação a d. Mostre que os segmentos de retas AA′, BB′ e CC ′ são concorrentes.

Sugestão: Usar o teorema de Ceva na forma trigonométrica.

Exerćıcio 5.9 (China 1988). Seja ABCDEF um hexágono inscrito em um ćırculo Γ.

Mostre que, as diagonais AD,BE e CF são concorrentes se, e somente se:

AB ⋅CD ⋅EF = BC ⋅DE ⋅ FA.

Sugestão: Usar o teorema de Ceva na forma trigonométrica.

Exerćıcio 5.10 (Hungria 2010). Seja ABCD um quadrilátero, cuja a área é igual a

S. Mostre que, se (AB +CD)(AD +BC) = 4S, então ABCD é um retângulo.
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6 TEOREMAS DE PAPILON

Neste Caṕıtulo são apresentados resultados bastante abordados em Olimṕıadas de

Matemática, seguimos como referência principal o autor (Bastidas, 2025), além de outros

autores de livros que contemplam problemas oĺımpicos, como é o caso de (Andreescu;

Korsky; Pohoata, 2016) e (Chen, 2016), também fizemos uma aplicação de um resultado

dispońıvel no blog do (Madeira, 2024) e alguns exerćıcios propostos encontrados no site

da Olimṕıada Brasileira de Matemática (OBM, 2025) por Jorge Craveiro. Tratamos

desses temas de forma didática e apresentamos as soluções dos problemas propostos da

mesma forma. Em geral, os resultados aqui apresentados não são abordados em livros

didáticos do ensino básico, em referências nacionais encontramos o próximo resultado,

que é o Teorema da Borboleta, apenas no livro do professor Antônio Caminha Tópicos

de Matemática Elementar, volume 2 (Caminha, 2024). Acreditamos assim, que o referido

material pode ser utilizado por professores para treinamento preparatório de seus alunos

em Oficinas Oĺımpicas e/ou outros fins.

6.1 O Teorema da Borboleta

Figura 1 – Teorema da Borboleta.

Fonte: Bastidas, 2025.

A palavra francesa papillon significa borboleta, por esta razão, aqui no Brasil os

teoremas de papillon são conhecidos como o Teorema da Borboleta.

Isso se deve ao fato de que a figura que se obtém ao desenharmos o diagrama descrito

a partir do enunciado do teorema tem uma notável semelhança com as asas de uma

borboleta.
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O Teorema da Borboleta só foi demonstrado pela primeira vez no ano de 1804, pelo

matemático escocês William Wallace. Nesse peŕıodo, a matemática passava por um mo-

mento de grande avanço, inclusive com a contribuição de Wallace na geometria projetiva

e em outros ramos da matemática.

Atualmente diversas provas deste teorema já foram exploradas, como por exemplo nas

áreas: anaĺıtica, geométrica e complexa.

Para nos auxiliar na demonstração deste teorema vamos fazer uso de um lema que nos

apresenta um dos casos de quando um quadrilátero é inscrit́ıvel.

Lema 6.1. Um quadrilátero é inscrit́ıvel se, e somente se, o ângulo entre um lado e uma

diagonal é igual ao ângulo entre o lado oposto e a outra diagonal.

Figura 2 – Quadrilátero inscrit́ıvel.

Fonte: Elaborada pelo autor, 2025.

Demonstração. (⇒) Seja ABCD um quadrilátero inscrit́ıvel. Logo, os ângulos inscritos

DÂC e DB̂C compartilham metade do ângulo central CÔD. Isto é,

DÂC =DB̂C =
ÎCD
2
.

(⇐) Seja ABCD um quadrilátero tal que ∡AD̂B = ∡AĈB. Suponhamos, por absurdo,

que ABCD não é inscrit́ıvel. Seja E a intersecção do lado BC com a circunferência

circunscrita ao triângulo ABD. Dessa forma, ∡AD̂B = ∡AĈB = ∡AÊB, o que é um

absurdo pela propriedade do ângulo externo. Logo, ABCD é inscrit́ıvel.
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Figura 3 – Quadrilátero inscrit́ıvel.

Fonte: Elaborada pelo autor, 2025.

No que segue, apresentamos o Teorema da Borboleta acompanhado de sua demons-

tração feita de maneira detalhada, com o objetivo de tornar seu entendimento o mais

claro posśıvel. Este resultado é bastante utilizado na resolução de problemas oĺımpicos,

mas pouco abordado na literatura nacional.

Teorema 6.2. (Borboleta). Seja M o ponto médio de uma corda AB de um ćırculo,

através do qual outras duas cordas EF e GH são desenhadas; EH e FG cruzam a corda

AB nos pontos N e L, respectivamente. Então M é o ponto médio de NL.

Demonstração. Faremos a prova deste teorema (Papillon ou Borboleta) através de três

casos, os quais apresentaremos agora.

No primeiro caso, a corda AB está contida na circnferência e os pontos N e L também.

� 1º caso: Se AM =MB, então NM =ML.

De fato, por hipótese, AM =MB o que implica AB ⊥MO, poisMO é um diâmetro

que passa pelo ponto médio de AB.

Observe a figura a seguir.
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Figura 4 – Teorema da Borboleta.

Fonte: Bastidas, 2025.

A próxima figura apresenta todos os dados necessários para a demonstração do 1º

caso, vejamos:
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Figura 5 – Demonstração do 1º caso do Teorema da Borboleta.

Fonte: Bastidas, 2025.

A partir do ponto G traçamos o segmento GS de modo que GS ⊥ L. Note que o

∆GMS é isósceles de base GS, ou seja, MS =MG e consequentemente os ângulos

MŜG = MĜS = θ.

Por outro lado, o ângulo SÊH é ângulo inscrito e tem em comum o mesmo arco que

o ângulo MĜS, isto é,

∡SÊH = ∡MĜS = ∡MŜG = θ.

No quadrilátero EMNS são congruentes os ângulos SÊN e NM̂S, já que NM̂S e

MŜG são ângulos alternos internos, o que implica, pelo Lema 6.1 que este quadrilátero é

inscrit́ıvel.

Sendo assim, existe uma circunferência que passa pelos vértices do quadrilátero EMNS,

ou seja, os ângulos NŜM e NÊM compartilham do mesmo arco,ÎAB. Logo,

NŜM = NÊM = α.

Portanto, os triângulos MNS e GLM são congruentes pelo caso ALA. Isto é, os

lados MN e LM são iguais e, consequentemente, a = b, como queŕıamos demonstrar.
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No segundo caso, a corda AB também está contida na circunferência, mas os pontos

N e L são externos à circunferência e estão sobre a reta que contém a corda AB.

� 2º caso: Se AM =MB, então NM =ML. De modo análogo ao que fizemos no 1º

caso, temos:

Figura 6 – 2º caso do Teorema da Borboleta.

fonte: Bastidas, 2025.

Para um melhor entendimento observemos a figura a seguir.
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Figura 7 – Demonstração do 2º caso do Teorema da Borboleta.

Fonte: Bastidas, 2025.

Sobre a circunferência tome o ponto S de tal modo que SG ⊥
←→
L . Observe que o

triângulo GMS é isósceles de base GS. Note também que:

∡HF̂S = ∡MĜS = ∡GM̂L = ∡SM̂N = θ.

Pelo Lema 6.1, o quadrilátero NFMS é inscrit́ıvel, pois os ângulos NM̂S e NF̂S são

congruentes.

Mas, se NFMS é inscrit́ıvel, então seus ângulos opostos somam 180○. Isto é,

∡NF̂M +∡NŜM = 180○.

Denotando o ângulo NF̂M = β, temos também que o ângulo HĜE = β, uma vez que

ambos são ângulos inscritos.

Como HĜE +MĜL = 180○, conclúımos, por transitividade, que MĜL = ω. Logo, os

triângulos MNS e GLM são congruentes pelo caso ALA.

Em resumo:

∡NM̂S = ∡GM̂L = θ
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MS =MG = l

∡NŜM = ∡MĜL = ω

Portanto, NM =ML, ou seja, a = b, como queŕıamos mostrar.

Neste último caso não temos a corda AB e sim a reta
←→
AB, contendo os pontos N e L

exteriores à circunferência, onde as propriedades do teorema também são válidas.

� 3º caso: Para mostrarmos o último caso da demonstração do teorema da borboleta,

seguimos com a mesma ideia anterior.

Figura 8 – Demonstração do 3º caso do Teorema da Borboleta.

Fonte: Bastidas, 2025.

Marcamos o ponto S sobre a circunferência de tal modo que GS ⊥ L. Como a reta
←→
AB

também é perpendicular a L e portanto paralela a GS e os pontos G e S são simétricos

em relação a L, então, podemos concluir que BG = AS.
Note que os ângulos GB̂L e SĜB são ângulos alternos internos, portanto, congruentes.

Além disso, como os segmentos BG e AS são simétricos em relação à reta L, o ângulo

SÂN tem a mesma medida que GB̂L e SĜB.

Isto é,

GB̂L = SĜB = SÂN = θ.
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Tomando o ângulo BĜL = α, o seu oposto pelo vértice tem medida igual, ou seja,

HĜF = α. Observe que HĜF é ângulo inscrito e compartilha o mesmo arco que o ângulo

HÊF que, por sua vez, é oposto pelo vértice ao ângulo NÊA, isto é:

BĜL =HĜF =HÊF = NÊA = α.

Veja que no quadrilátero inscrito SEFG, o ângulo SÊF também tem medida igual a

θ. Ora, o ângulo raso BĜF = 180○, logo

α +HĜS + θ = 180○ (6.1)

Por outro lado, os ângulos opostos do quadrilátero SEFG também somam 180○, ou

seja

(α +HĜS) + SÊF = 180○ (6.2)

Resolvendo as igualdades (6.1) e (6.2), temos:

α +HĜS + θ = α +HĜS + SÊF ⇒ SÊF = θ.

Agora, vamos provar que o quadrilátero NESA também é inscrit́ıvel. Observe que

NÊF é ângulo raso. Dáı,

α + SÊA + θ = 180○. (6.3)

Como vimos anteriormente, BĜF também é ângulo raso, ou seja:

α +HĜS + θ = 180○. (6.4)

Das equações (6.3) e (6.4), temos:

α + SÊA + θ = α +HĜS + θ ⇒ SÊA =HĜS.

Em outras palavras, conclúımos que o ângulo NÊS = SĜF , o que implica que o

quadrilátero NESA, assim como o quadrilátero inscrito SEFG, também tem ângulos

opostos medindo 180○, pois o ângulo SÂN = SÊF = θ.
Portanto, NESA é inscrit́ıvel e pelo Lema 6.1, NÊA = NŜA = α. Isto é, o triângulo

NSA é congruente ao triângulo LGB pelo caso ALA, o que acarreta, a = b. Mas, por

hipótese, AM =MB, logo, NM =ML, como queŕıamos demonstrar.

Faremos agora um exemplo de aplicação do Teorema da Borboleta, ressaltamos que a

sua demonstração foi feita de maneira clara e com todos os detalhes, pois temos o objetivo

de apresentar um trabalho que seja diferenciado no sentido de que o estudante que venha
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à procura de informações sobre o assunto, as encontre da forma mais didática posśıvel.

Trata-se do problema 3 da Olimṕıada de Matemática do Cone Sul de 2020,

proposto por Jhefferson Lopez do Peru.

Problema

Seja ABC um triângulo acutângulo, com AC < BC e ω a circunferência que passa por

A, B e C. Seja M o ponto médio de BC. Seja F um ponto sobre o segmento AB tal que

CA = CF e seja E um ponto do segmento BC tal que EB = EF . A reta
←Ð→
AM intersecta

ω no ponto D (diferente de A). A reta
←Ð→
DE intersecta a reta

←Ð→
FM em G. Demonstrar que

G pertence a ω.

Figura 9 – Olimṕıada de Matemática do Cone Sul, 2020.

Fonte: Madeira, 18/12/2024.

Demonstração. Tracemos os segmentos CX ∥ AB, dáı, BX = AC. Como por hipótese,

AC = CF , logo, BX = AC = CF . Ou seja, o quadrilátero BXCF é um paralelogramo e

o quadrilátero BXCA é um trapézio isósceles.

Como as diagonais do paralelogramo BXCF intersectam-se em seus respectivos pontos

médios e por hipótese M é ponto médio de BC, então FX ∩ BC = M . Observe que

∡LĈX = ∡EB̂F = α, uma vez que CX ∥ BF enquanto BC é uma transversal.
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Ainda, como EB = EF , o triângulo BEF é isósceles de base BF e dáı, ∡BF̂E =
∡EB̂F = α. Note também que o ângulo inscrito EB̂F compartilha o mesmo arco que o

ângulo inscrito CX̂L, isto é, ∡EB̂F = ∡CX̂L = α. Ou seja, o triângulo CXL é isósceles

de base CX e como o quadrilátero BXCF é um paralelogramo, CX = BF , o que implica

que os triângulos BEF e CXL são congruentes pelo caso ALA.

Logo, XL = CL = BE = FE, o que acarreta BE = CL e como por hipótese M é ponto

médio de BC, então BM = CM e portanto, EM =ML. Dessa forma, podemos concluir

pelo Teorema da Borboleta que o ponto G ∈ ω, como queŕıamos demonstrar.

6.2 Aplicações dos quadriláteros inscrit́ıveis

Nesta seção, iremos estudar uma das aplicações dos quadriláteros inscrit́ıveis, a con-

corrência de circunferências. Vale ressaltar que todos os resultados expostos a seguir foram

feitos de forma detalhada, a fim de proporcionar um melhor entendimento para o leitor.

Fizemos isto com o objetivo de trazer novos conhecimentos para aqueles que procuram se

aprofundar em estudos interessantes como os apresentados da forma acima. Seguimos a

referência (Bastidas, 2025), entitulada por “Circunferencia, teoria - demostraciones trazos

auxiliares”.

6.2.1 Concorrência de circunferências

Vamos iniciar este estudo através dos próximos dois teoremas, ambos tratam sobre

dois casos que envolvem a concorrência de circunferências.

Teorema 6.3. Na figura a seguir, as circunferências circunscritas aos triângulos ABC,

ADF , DEB e CEF são concorrentes.
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Figura 10 – Triângulos ABC, ADF , DEB e CEF .

Fonte: Bastidas, 2025.

Demonstração. Tracemos as circunferências circunscritas aos triângulos BDE e CEF

secantes nos pontos E e X. Conforme a figura.

Figura 11 – Circunferências circunscritas aos triângulos BDE e CEF .

Fonte: Bastidas, 2025.

Sejam AĈB = α, BÂC = β e AB̂C = θ as medidas dos ângulos internos do triângulo

ABC. Logo,
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α + β + θ = 180○. (6.5)

Note que, no quadrilátero BDEX o ângulo inscrito DB̂E = θ compartilha o mesmo

arco que o ângulo também inscrito DX̂E, ou seja, DB̂E =DX̂E = θ.
Já no quadrilátero CEXF , o ângulo EX̂F = α, pois, o ângulo EĈF = 180○−α e como

a soma dos ângulos opostos de um quadrilátero inscrito vale 180○, temos:

EX̂F + (180○ − α) = 180○ ⇒ EX̂F + 180○ − α = 180○ ⇒ EX̂F = α.

Agora, provaremos que o quadrilátero ADXF também é inscrit́ıvel. De fato, como o

ângulo DX̂F = α + θ e o seu oposto é DÂF = β, então:

DX̂F +DÂF = α + θ + β = 180○.

Isto é, pela igualdade 6.5, a soma dos ângulos opostos de ADXF é igual a 180○,

portanto, ADXF é inscrit́ıvel, como queŕıamos provar.

Por fim, vamos mostrar que o quadrilátero ABXC também é inscrit́ıvel.

Figura 12 – Quadrilátero ABXC.

Fonte: Bastidas, 2025.

Ora, denotando BX̂D = x, então BÊD = x, uma vez que ambos são ângulos inscritos

de BDEX. Por outro lado, no quadrilátero CEXF também temos CÊF = CX̂F = x,
pois BX̂D e CÊF são opostos pelo vértice.
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Sendo assim, o ângulo CX̂E = α − x. Veja que, no quadrilátero ABCX, são opostos

os ângulos BÂC e BX̂C. Logo,

BÂC +BX̂C = β + (α − x + θ + x) ⇒ BÂC +BX̂C = α + β + θ.

Portanto, por 6.5, BÂC +BX̂C = 180○, mostrando assim que o quadrilátero ABXC é

inscrit́ıvel e que de fato todas as circunferências circunscritas aos triângulos descritos no

enunciado do teorema são concorrentes.

A figura a seguir representa as quatro circunferências concorrendo no ponto X.

Figura 13 – Circuferências concorrendo em X

.

Fonte: Bastidas, 2025.

A seguir, temos o segundo teorema como foi mencionado no ińıcio desta Seção, este

trata do caso em que sobre os lados de um triângulo ABC são constrúıdos outros três

novos triângulos, de tal modo que a soma de cada ângulo do vértice oposto ao respectivo
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lado do triângulo ABC é igual a 180○.

Teorema 6.4. Se na figura a seguir α+β+θ = 180○, então as circunferências circunscritas

aos triâgulos ABP , BQC e ARC são concorrentes.

Figura 14 – A soma α + β + θ = 180○

Fonte: Bastidas, 2025.

Demonstração. Como todo triângulo admite uma circunferência circunscrita, então,

sejam B e X os pontos de interseção das circunferências circunscritas aos triângulos

APB e BQC. Veja que os quadriláteros APBX e BQCX são inscrit́ıveis, já que ambos

possuem seus vértices sobre as respectivas circunferências.
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Figura 15 – Quadriláteros APBX e BQCX.

Fonte: Bastidas, 2025.

Agora basta mostrarmos que o quadrilátero ARCX também é inscrit́ıvel. De fato,

veja que o ângulo raso BX̂Z = BX̂A+AX̂Z. Escrevendo AX̂B = 180○ −AX̂Z e sabendo

que o quadrilátero APBX é inscrit́ıvel, temos:

AX̂B +AP̂B = 180○⇒ 180○ −AX̂Z +AP̂B = 180○⇒ AX̂Z = AP̂B.

Isto é, AX̂Z = AP̂B = β. De forma análoga mostra-se que CX̂Z = BQ̂C = θ.
Por hipótese, α + β + θ = 180○. Então, AX̂C +AR̂C = (α + β) + θ = 180○, o que implica

que ARCX também é inscrit́ıvel e portanto as circunferências circunscritas aos triângulos

APB, BQC e ARC concorrem em X, como queŕıamos demonstrar.

A próxima figura é uma representação da interseção das circunferências citadas ante-

riormente.
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Figura 16 – Circunferências concorrendo no ponto X.

Fonte: Bastidas, 2025.

Ainda na mesma figura, vamos ressaltar um resultado muito interessante, a saber:

Corolário 6.4.1. O triângulo que tem vértices nos centros das circunferências circuns-

critas, tem seus ângulos internos de medidas α, β e θ.

Demonstração. De fato, note que o ângulo SX̂U = β + θ, como foi visto na Figura 16,

ao mesmo tempo em que o quadrilátero SXUO3 é inscrit́ıvel, já que os ângulos O3ŜX

e XÛO3 são retos, isto é, O3ŜX + XÛO3 = 90○ + 90○ = 180○. Assim, também temos

SX̂U + SÔ3U = (β + θ) + SÔ3U = 180○. Pela igualdade 6.5, segue que:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

α + β + θ = 180○

(β + θ) + Ô3 = 180○.

Subtraindo uma equação da outra encontramos Ô3 = α.
Analogamente prova-se que UX̂W = α + β e WX̂S = α + θ e como os quadriláteros

WXSO1 e UXWO2 são inscrit́ıveis chegamos a Ô1 = β e Ô2 = θ, ou seja, os ângulos

internos do triângulo O1O2O3 são, respectivamente, β, θ e α, como queŕıamos provar.
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6.2.2 A reta de Simson-Wallace

A reta de Simson-Wallace é um resultado clássico da Geometria Plana. Tal resultado

afirma que dado um triângulo ABC inscrito em uma circunferência ω e um ponto P

qualquer pertencente a ω, sendo X, Y e Z as projeções ortogonais de P sobre os lados

do triângulo ABC, prolongados ou não, então os pontos X, Y e Z são colineares e a reta

que os contêm é denominada reta de Simson-Wallace.

“O teorema de Simson-Wallace recebe o nome do matemático escocês e professor de

matemática da Universidade de Glasgow Robert Simson (14 de Outubro de 1687 - 1 de

Outubro de 1768) e do matemático, astrônomo e inventor do pantografo William Wallace

(23 de Setembro de 1768 - 28 de Abril de 1843). Além do teorema, tanto Simson quanto

Wallace tiveram grandes contribuições matemáticas(...).” (Wikipédia)

Teorema 6.5. (Reta de Simson-Wallace) Em todo triângulo, as projeções ortogonais

de um ponto da circunferência circunscrita aos seus lados, são colineares. A reta que

contém os pés das perpendiculares baixadas desse ponto até os lados do triângulo chama-

se reta de Simson-Wallace.

Figura 17 – Reta de Simson-Wallace.

Fonte: Bastidas, 2025.

Em resumo:
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� Se P está na circunferência;

� E, F e G: são colineares;

�
←→
L : É a reta de Simson do ponto P .

Demonstração. Vamos iniciar nossa prova observando a figura a seguir.

Figura 18 – Demonstração da reta de Simson-Wallace.

Fonte: Bastidas, 2025.

Nesta figura traçamos os segmentos PA e PB. Sejam os ângulos AF̂E = α e PF̂G = β.
Vamos mostrar que α + β = 90○.

De fato, os quadriláteros APFE e PFBG são inscrit́ıveis. Note que, no quadrilátero

APFE, estamos utilizando o lema 6.1 e o fato de que os ângulos AÊP = AF̂P = 90○.

Já no quadrilátero PFBG estamos levando em consideração as projeções ortogonais do

ponto P , isto é, PF̂B = PĜB = 90○. Logo, PF̂B + PĜB = 180○, o que acarreta na

inscritibilidade de PFBG. Veja que pelo lema 6.1, PF̂G = PB̂G = β.
No quadrilátero inscrito APBC, temos PÂC = β. Ora, como PB̂G = β, então,

PB̂C = (180○ − β). Dáı,

PÂC + (180○ − β) = 180○⇒ PÂC = β.
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Assim, no triângulo retângulo AEP , tem-se α + β + 90○ = 180○ ⇒ α + β = 90○. Isso

implica dizer que o ângulo EF̂G = (α + β) + 90○ = 90○ + 90○ = 180○. Ou seja, EF̂G

é ângulo raso e consequentemente os pontos E, F e G são colineares, como queŕıamos

demonstrar.

6.2.3 A reta de Simson-Wallace para quadriláteros

O próximo resultado é uma aplicação da reta de Simson-Wallace em um quadrilátero,

isso é posśıvel porque podemos subdividir tal quadrilátero em quatro triângulos e em cada

um desses triângulos aplicamos a reta de Simson, como fizemos anteriormente. Logo após,

fazemos as projeções ortogonais do ponto P sobre cada uma das retas de Simson obtidas

nos triângulos, obtendo os pontos P1, P2, P3 e P4. O que vamos provar a seguir é que

esses quatro pontos são colineares e a reta que os contêm chama-se reta de Simson para

quadriláteros.

Teorema 6.6. (Reta de Simson-Wallace para quadriláteros.) Seja ABCD um

quadrilátero inscrito em uma circunferência. Sejam também as retas:

�
←→
L 1: reta de Simson de P com relação ao ∆ABC;

�
←→
L 2: reta de Simson de P com relação ao ∆BCD;

�
←→
L 3: reta de Simson de P com relação ao ∆ACD;

�
←→
L 4: reta de Simson de P com relação ao ∆ABD.

Então P1, P2, P3 e P4 são colineares e a reta que os contêm chama-se reta de Simson de

P em relação ao quadrilátero ABCD.
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Figura 19 – Reta de Simson no quadrilátero ABCD.

Fonte: Bastidas, 2025.

Demonstração. Sejam ∡PP̂4P1 = x e ∡HP̂4P3 = y. Nosso objetivo é provar que x + y =
90○.

Observe que o quadrilátero PP4P3H é inscrit́ıvel, pois os ângulos ∡PP̂4H = ∡PP3H =
90○, isto é, o ângulo formado entre um lado e uma diagonal é igual ao ângulo formado

entre o lado oposto e a outra diagonal (ver 6.1), por esta razão, conclúımos que o ângulo

HP̂P3 também é igual a y.

De forma análoga, o quadrilátero PP1P4L também é inscrit́ıvel, já que os ângulos

PP̂1L = P ˆP4L = 90○, logo, PL̂P1 = PP̂4P1 = x.
Agora, note que o quadrilátero PLMH também é inscrit́ıvel, pois os pontos P,L,M,H

e A são ćıclicos. Logo, a soma dos ângulos opostos PĤM + PL̂M = 180○. Note também

que PL̂M = 180○ − x.
Dáı,

PĤM + PL̂M = 180○⇒ PĤM + (180○ − x) = 180○⇒ PĤM = x.
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Como o triângulo PP3H é retângulo conclúımos que x + y = 90○. Portanto, P1P̂4P3 é

ângulo raso, pois PP̂4H = 90○ e x + y = 90○, então, os pontos P1, P4 e P3 são colineares, o

que mostra o teorema.

A seguir deixaremos alguns exerćıcios sobre a reta Simson-wallace.

6.3 Exerćıcios propostos

Exerćıcio 6.1. Se um dos lados do triângulo ABC é perpendicular ao raio da circun-

ferência circunscrita a ele, então esta interseção ocorre no ponto médio deste lado e, além

disso, a reta de Simson LP , também corta este lado em seu ponto médio.

Figura 20 – Reta de Simson interceptando o ponto médio de AC.

Fonte: Bastidas, 2025.

Exerćıcio 6.2. Num triângulo ABC, prove que as projeções de A sobre as bissetrizes

internas e externas traçadas a partir dos vértices B e C são colineares.

Exerćıcio 6.3. Num triângulo ABC, sejam D, E e F os pés das alturas em BC, AC e

AB, respectivamente. Prove que as projeções de D sobre as retas AB, BE, CF e AC são

colineares.

Exerćıcio 6.4. Tome M um ponto sobre o circunćırculo do triângulo ABC qualquer.

Sejam X, Y e Z as interseções dos ćırculos de diâmetro AM, BM e CM com o circunćırculo

de ABC, respectivamente. Prove que os pontos X, Y e Z são colineares.
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Exerćıcio 6.5. Seja ABC um triângulo qualquer e Q um ponto da circunferência cir-

cunscrita a este triângulo. Se os ângulos AB̂Q = 90○ e AĈQ = 90○, então a reta de

Simson-Wallace LQ, coincide com o lado BC.

Figura 21 – Reta de Simson coincidindo com o lado BC.

Fonte: Bastidas, 2025.

Exerćıcio 6.6. (Hong Kong 1998) Seja PQRS um quadrilátero inscrit́ıvel com ângulo

PŜR = 90○, e sejam H e K as projeções de Q nas retas PR e PS. Prove que HK bissecta

QS.

Exerćıcio 6.7. No triângulo ABC, AD e AM são bissetriz interna e mediana, respecti-

vamente. Sejam X e Y as projeções de D sobre os lados AB e AC, respectivamente. Uma

perpendicular ao lado BC através do ponto D corta o segmento XY no ponto P. Prove que

A, P e M são colineares.

Exerćıcio 6.8. Os pontos A, B e C estão sobre uma reta, e P é um ponto qualquer fora

dessa reta. Prove que o ponto P e os circuncentros dos triângulos PAB, PAC e PBC

formam um quadrilátero inscrit́ıvel.

Exerćıcio 6.9. Seja ABC um triângulo qualquer e P um ponto da circunferência cir-

cunscrita a ABC. Se
←→
L P é a reta de Simson-Wallace associada ao ponto P , então:
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←→
L P ∥ AA1 ∥ BB1 ∥ CC1.

Figura 22 –
←→
L P ∥ AA1 ∥ BB1 ∥ CC1.

Fonte: Bastidas, 2025.

Exerćıcio 6.10. (USA TST 2014) Seja ABC um triângulo acutângulo, e seja X um

ponto variável no interior do arco menor BC do circunćırculo de ABC. Sejam P e Q os

pés das perpendiculares de X às retas CA e CB, respectivamente, e seja R a interseção

da reta PQ e da perpendicular de B ao lado AC. Seja r a reta através de P paralela a XR.

Prove que, variando-se X, a reta r sempre passa por um ponto fixo.



106

7 CONCLUSÃO

De acordo com as necessidades do homem desde a Antiguidade em busca de novas des-

cobertas, invenções e inovações, a Matemática sempre se fez presente nessas explorações,

em especial a Geometria Plana. Nesse sentido, realizamos um consulta bibliográfica sobre

alguns tópicos que consideramos de suma importância, como é o caso do Teorema de Tales

e suas inúmeras aplicações, teorema este, de origem milenar e que ao mesmo tempo é tão

contemporâneo.

O ensino da Geometria, por diversos fatores, tem se tornado, muitas vezes, de dif́ıcil

transmissão e assimilação, quando nos referimos à visualização de figuras planas e espaci-

ais, interpretação de gráficos, entre outros. Entretanto, podemos inferir ações estratégicas

para resolver problemas e melhorar o processo de ensino-aprendizagem da Geometria na

Educação Básica.

O uso do software GeoGebra nas aulas de Geometria as torna mais atrativas, interati-

vas e eficazes, convencer os estudantes da importância dos resultados geométricos torna-se

uma tarefa menos árdua, pois temos em mãos um instrumento de trabalho muito efici-

ente, compreender o Teorema de Tales, por exemplo, foi uma inferência satisfatória. Mais

ainda, quando aplicamos o GeoGebra como uma ferramenta complementar no passo a

passo das construções realizadas, tivemos a oportunidade de mostrar aos estudantes como

o software pode enriquecer e fortalecer nossos conhecimentos.

A aplicação do GeoGebra como instrumento facilitador do ensino de Geometria, em

especial, nas construções que realizamos durante as etapas da sequência didática que foi

desenvolvida nessa dissertação, mostrou-se extremamente importante para a compreensão

dos estudantes envolvidos. Além disso, o seu aux́ılio em quase todas as demonstrações

que estão em tela e na interpretação de enunciados de problemas que aqui foram expostos

também foi de suma importância. Vale ressaltar que, os procedimentos de construção do

passo a passo que adotamos para mostrar os casos de semelhança de triângulos são apenas

uma forma ou um caminho que percorremos.

Dessa forma, entendemos ser plenamente posśıvel e bem-vinda a utilização dos re-

cursos tecnológicos nas aulas de Geometria. Tal iniciativa requer comprometimento e

profissionalismo por parte dos professores, contudo, os resultados obtidos podem ser sig-

nificantes e transformadores, pois despertam no educando um novo olhar para os entes

matemáticos. Portanto, do ponto de vista metodológico e experimental, podemos concluir

que o uso desse recurso tecnológico, sem dúvidas deixa o seu legado no processo de ensino

aprendizagem.

Ainda enfatizamos uma posśıvel melhoria e ampliação deste trabalho por parte de

terceiros que venham fazer uso deste tipo de material para a melhoria do ensino nas

escolas da Educação Básica.
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auxiliares. Cuzcano.

BOYER, Carl B.; MERZBACH, Uta C. História da Matemática. 3.ed. [Tradução
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Vol.09. São Paulo: Editora Atual, 2013.

MADEIRA, Renato. Blog do Madeiro. Dispońıvel em:
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