

UNIVERSIDADE ESTADUAL DA PARAÍBA CAMPUS I - CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE QUÍMICA PROGRAMA DE PÓS GRADUAÇÃO EM QUÍMICA

EWERTON MATIAS DE LIMA

EFEITOS TÉRMICOS EM PARÂMETROS DE INTENSIDADE DE COMPOSTOS COM ÍONS LANTANÍDEOS: UM ESTUDO COMPUTACIONAL

CAMPUS I - CAMPINA GRANDE 2020

EWERTON MATIAS DE LIMA

EFEITOS TÉRMICOS EM PARÂMETROS DE INTENSIDADE DE COMPOSTOS COM ÍONS LANTANÍDEOS: UM ESTUDO COMPUTACIONAL

Dissertação de mestrado apresentada ao Programa de Pós-Graduação em Química da Universidade Estadual da Paraíba, como requisito parcial à obtenção do título de Mestre em Química.

Área de concentração: Química Teórica.

Orientador: Prof. Renaldo Tenório de Moura Júnior

CAMPUS I - CAMPINA GRANDE 2020

Lima, Ewerton Matias de.
Efeitos térmicos em parâmetros de intensidade de compostos com íons lantanídeos [manuscrito] : um estudo computacional / Ewerton Matias de Lima. - 2020.
63 p. : il. colorido.
Digitado.
Dissertação (Mestrado em Química - Mestrado) - Universidade Estadual da Paraíba, Centro de Ciências e Tecnologia , 2021.
"Orientação : Prof. Dr. Renaldo Tenório de Moura Júnior , Departamento de Química - CCT."
1. JOYSpectra. 2. Efeitos térmicos. 3. Algoritmo. 4.
Computação na Química. I. Título
21. ed. CDD 540

Elaborada por Camile de A. Gomes - CRB - 15/559

BC/UEPB

EWERTON MATIAS DE LIMA

EFEITOS TÉRMICOS EM PARÂMETROS DE INTENSIDADE DE COMPOSTOS COM ÍONS LANTANÍDEOS: UM ESTUDO COMPUTACIONAL

Dissertação de mestrado apresentada ao Programa de Pós-Graduação em Química da Universidade Estadual da Paraíba, como requisito parcial à obtenção do título de Mestre em Química.

Área de concentração: Química teórica

Aprovada em: 11/12/2020.

BANCA EXAMINADORA

Prof. Dr. Renaldo Tenório de Moura Jr. Universidade Federal da Paraíba (UFPB)

abucer

Prof. Dr. Juracy Regis de Lucena Jr. Universidade Estadual da Paraíba (UEPB)

Prof. Dr. Eduardo de Castro Águiar Universidade Federal Rural de Pernambuco (UFRPE)

À minha família, que sempre esteve ao meu lado em todos os momentos, dedico!

"Se um dia enxerguei mais longe, foi porque me apoiei sobre os ombros de gigantes." (Isaac Newton)

RESUMO

Os lantanídeos são elementos que possuem a oxidação de íons trivalentes estáveis, onde em sua estrutura eletrônica possui a camada 4f incompleta, proporcionando efeito de blindagem dos elétrons dessa camada. As transições 4f-4f são importantes para os mecanismos que envolvem a teoria de Judd-Ofelt e os métodos de cálculos envolvendo efeitos térmicos e os parâmetros de intensidade desenvolvidos nesse trabalho. A teoria de Judd-Ofelt inclui os mecanismos dipolo elétrico forçado (FED) e a acoplamento dinâmico (DC) para contabilizar as transições eletrônicas em compostos lantanídeos. O programa JOYSpectra desenvolvido pelo nosso grupo de pesquisa utiliza essa teoria para calcular os parâmetros de intensidade Ω_{λ} ($\lambda = 2, 4 \in 6$), incluindo os modelos de recobrimento SOM (Modelo de recobrimento simples) e BOM (Modelo de recobrimento de ligação) para o tratamento dos efeitos de covalência das ligações entre o lantanídeo e os ligantes. Nesse trabalho o objetivo é a implementação no código do JOYSpectra desenvolvido em linguagem C de dois novos algoritmos, denominados Cubo variacional e Modos Normais Distorcidos. No modelo do cubo variacional inclui-se efeitos térmicos sobre os Ω_{λ} , sendo realizados diversos deslocamentos relativos ao volume de um cubo nas posições dos ligantes em função da temperatura. Foi implementada, no JOYSpectra, a funcionalidade que promove simulação de um grande número de configurações espaciais $(N\approx 10^6)$, em que os limites do deslocamento de cada átomo são dados através da população de Bose-Einstein, que relaciona a temperatura e o comprimento da caixa (L). A nova implementação foi testada no sistema EuCl₆, para o qual se tem valores dos parâmetros de intensidade Ω_2 nas temperaturas 77 K e 300 K, obtidos por Carneiro Neto, 2019 para comparação com os resultados do algoritmo do Cubo variacional. Os resultados indicam que, como esperado, próximo de 100 K o comportamento da população de Bose-Einstein é similar ao de uma população de Boltzmann. O algoritmo dos Modos Normais distorcidos opera pequenas variações nos vetores de deslocamentos que são atribuídos a cada modo normal das espécies coordenadas. Tais variações, que simulam os efeitos térmicos, são utilizadas nesse modelo para avaliar os parâmetros de intensidade Ω_{λ} . A diferença entre os modelos está relacionada com as variáveis envolvidas, onde o peso populacional para cada deslocamento geométrico é contabilizado no modelo dos modos normais.

Palavras-Chave: JOYSpectra. Efeito térmico. Algoritmo.

ABSTRACT

Lanthanides are elements that have the oxidation of stable trivalent ions, where their electronic structure has an incomplete 4f layer, providing a shielding effect for the electrons of that layer. The 4f-4f transitions are important for the mechanisms involving the Judd-Ofelt theory and the calculation methods involving thermal effects and the intensity parameters developed in this work. The Judd-Ofelt theory includes the forced electric dipole (FED) and dynamic coupling (DC) mechanisms to account for electronic transitions in lanthanide compounds. The JOYSpectra program developed by our research group uses this theory to calculate the intensity parameters Ω_{λ} ($\lambda = 2, 4 \in 6$), including the SOM (Simple overlap model) and BOM (bond overlap model) overlap models for treating the covalence effects of the bonds between the lanthanide and the binders. In this work, the objective is to implement in the JOYSpectra code developed in C language two new algorithms, called Variational Cube and Distorted Normal Modes. The variational cube model includes thermal effects on the Ω_{λ} , with several displacements related to the volume of a cube in the positions of the binders as a function of temperature. It was implemented, without JOYSpectra, the functionality that promotes simulation of a large number of spatial configurations ($N\approx 10^6$), in which the displacement limits of each atom are given through the Bose-Einstein population, which relates the temperature and the length of the box (L). The new implementation was tested in the EuCl6 system, for which values of intensity parameters Ω_2 are found at temperatures 77 K and 300 K, obtained by Carneiro Neto, 2019 for comparison with the results of the Variational Cube algorithm. The results indicate that, as expected, close to 100 K the behavior of the Bose-Einstein population is similar to that of a Boltzmann population. The Distorted Normal Modes algorithm operates small variations in the displacement vectors that are attributed to each normal mode of the coordinated species. Such variations, which simulate the thermal effects, are used in this model to evaluate the intensity parameters Ω_{λ} . The difference between the models is related to the variables involved, where the population weight for each geometric displacement is counted in the model in the normal modes.

Keywords: JoySpectra, Thermal effects. Algorithm

LISTA DE ILUSTRAÇÕES

Figura 1 -	Representação dos efeitos de covalência introduzidos pelo modelo BOM	
	ao mecanismo de acoplamento dinâmico	19
Figura 2 -	. Representação dos parâmetros de recobrimento de ligação	20
Figura 3 -	Fluxograma de funcionamento do input do programa JOYSpectra, e sua	
	teoria fundamentada do cálculo teórico	31
Figura 4 -	Trecho do algoritmo referente a manipulação de geometria da esfera de	
	coordenação da molécula (calctemp.h) em linguagem C	32
Figura 5 -	Trecho do algoritmo referente a gerar um dr_i aleatório e a probabilidade	
	de aceitação a partir do algoritmo de Metropolis (freqmods.h) em	
	linguagem C	34
Figura 6 -	Implementação da temperatura para distorções térmicas, da geometria de	
	equilíbrio	35
Figura 7 -	Ilustração do movimento vibracional causado por deslocamentos do	
	ligante, em relação a um comprimento L, a partir da geometria de	
	equilíbrio	37
Figura 8 -	Comportamento do comprimento L (Å) x Temperatura (K), em relação a	
	equação de população térmica	37
Figura 9 -	Estrutura da fluxionalidade do funcionamento do algoritmo no programa	
	JOYSpectra, para análise dos Ω_{λ} , para os modos normais de	
	vibração	38
Figura 10 -	Série de complexos de európio, variando na inserção de moléculas	
	acetilacetona, para análise dos parâmetros de intensidade teórico	39
Figura 11 -	Exemplo de vetores deslocamentos de um dos modos normais de vibração	
	que são utilizados para deslocar de forma discreta a	
	molécula	42
Figura 12 -	Vetores deslocamentos dos complexos de um modo normal de vibração,	
	necessário para direcionar os deslocamentos discretos (dr), $[Eu(H_2O)_8]^{3+}$,	
	$[Eu(ACAC)(H_2O)_6]^{2+}, [Eu(ACAC)_2(H_2O)_4]^+, [Eu(ACAC)_3(H_2O)_2],$	
	$[Eu(ACAC)_4]^-$	56
Figura 13 -	LMO do ligante bidentado ACAC, região de ligação com íon lantanídeo	
	Eu ³⁺	56

Figura 14 -	Representação das distância de deslocamentos de cada átomo ligante ao	
	íon Eu ³⁺ , para os primeiros modos vibracionais, variando da frequência	
	32,125cm ⁻¹ - 110,117cm ⁻¹ , referente a tabela 3	57
Figura 15 -	Representação das variações de distância, entre as ligações OEu ³⁺ , para	
	os primeiros modos vibracionais, variando da frequência 19,992cm ⁻¹ -	
	131,785 cm ⁻¹ , referente a tabela 4	58
Figura 16 -	Representação das variações de distância, entre as ligações OEu ³⁺ , para	
	os primeiros modos vibracionais, variando da frequência 24,601 cm-1 -	
	89,555cm ⁻¹ , referente a tabela 5	58
Figura 17 -	Representação das variações de distância, entre as ligações OEu ³⁺ , para	
	os primeiros modos vibracionais, variando da frequência 18,740 cm-1 -	
	69,360 cm ⁻¹ , referente a tabela 6	59

LISTA DE TABELAS

Tabela 1 -	- Valores teóricos dos parâmetros de intensidade Ω_{λ} , (λ =2, 4 e 6, em 10 ⁻								
	20 cm ²) e do comprimento da caixa dimensional (L, em Å), para o ligante								
	(Cl) do composto de lantanídeo $EuCl_6$ em diferentes								
	temperaturas	36							
Tabela 2 -	Valores teóricos da frequência (v) em cm $^{-1}$, constante de força (k) em N,								
	temperatura = 300K, $\alpha' = 1,5$, e os parâmetros de intensidade $\Omega_{\lambda_{1}}$ (λ =2,								
	4 e 6, em 10^{-20} cm ²), referente ao complexo [Eu(H ₂ O) ₈] ³⁺ , para cada								
	modo normal de vibração	40							
Tabela 3 -	Valores teóricos da frequência (v) em cm ⁻¹ , constante de força (k) em N,								
	temperatura = 300K, $\alpha' = 1,5$ para os O da H ₂ O, $\alpha' = 2,6$ para os O do								
	ACAC e os parâmetros de intensidade $\Omega_{\lambda_{2}}$ (λ =2, 4 e 6, em 10 ⁻²⁰ cm ²),								
	referente ao complexo $[Eu(ACAC)(H_2O)_6]^{2+}$, para cada modo normal de								
	vibração	43							
Tabela 4 -	Valores teóricos da frequência (v) em cm $^{-1}$, constante de força (k) em N,								
	temperatura = 300K, $\alpha' = 1,5$ para os O da H ₂ O, $\alpha' = 2,6$ para os O do								
	ACAC e os parâmetros de intensidade $\Omega_{\lambda_{2}}$ (λ =2, 4 e 6, em 10 ⁻²⁰ cm ²),								
	referente ao complexo $[Eu(ACAC)_2(H_2O)_4]^+$, para cada modo normal de								
	vibração	45							
Tabela 5 -	Valores teóricos da frequência (v) em cm $^{-1}$, constante de força (k) em N,								
	temperatura = 300K, $\alpha' = 1,5$ para os O da H ₂ O, $\alpha' = 2,6$ para os O do								
	ACAC e os parâmetros de intensidade $\Omega_{\lambda_{2}}$ (λ =2, 4 e 6, em 10 ⁻²⁰ cm ²),								
	referente ao complexo $[Eu(ACAC)_3(H_2O)_2]$ para cada modo normal de								
	vibração	48							
Tabela 6 -	Valores teóricos da frequência (v) em cm $^{-1}$, constante de força (k) em N,								
	temperatura = 300K, α' = 2,6 para os O do ACAC e os parâmetros de								
	intensidade Ω_{λ} , (λ =2, 4 e 6, em 10 ⁻²⁰ cm ²), referente ao complexo								
	[Eu(ACAC) ₄] ⁻ para cada modo normal de vibração	51							

LISTA DE ABREVIATURAS E SIGLAS

- BOM Modelo de recobrimento de Ligação
- DC Acoplamento dinâmico
- DFT Teoria do funcional da densidade
- FED Dipolo elétrico forçado
- LMO Orbital Molecular Localizado
- SOM Modelo de recobrimento simples

LISTA DE SÍMBOLOS

- α_{OP} Polarizabilidade de recobrimento
- α ' Polarizabilidade efetiva do ligante
- Ω_{λ} Parâmetros de intensidade

SUMÁRIO

1. INTRODUÇÃO	13
2. OBJETIVOS	15
2.1 Geral	15
2.2 Específicos	15
3. FUNDAMENTAÇÃO TEÓRICA	16
3.1 Abordagem do método da DFT	16
3.2 Parâmetros de Intensidade Judd-Ofelt e as contribuições dos modelos BOM e SOM	17
3.3 Modelo de deslocamento da geometria de equilíbrio	20
3.4 Modelo de distorção geométrica utilizado os modos normais de vibração com efeitos térmicos no cálculo de parâmetros de intensidades	21
3.4.1 Gerando as <i>i</i> conformações: usando os Q <i>i</i>	22
3.5 Teoria utilizada pelo JOYSpectra	24
3.6 Distribuição populacional de Bose–Einstein e Maxwell–Boltzmann	25
3.7 Modos normais de vibração das moléculas	25
3.8 Desenvolvimento teórico do cálculo sobre a frequência e modos normais de vibração	26
3.9 Modelo de análise vibracional no Gaussian	28
4. METODOLOGIA	31
4.1 Algoritmo de variação dos ligantes envolvendo Bose-Einstein	31
4.2 Algoritmo de variações discretas nos vetores de deslocamento dos modos normais de vibração.	33
5. RESULTADOS E DISCUSSÃO	35
5.1. Análise térmica dos parâmetros de intensidade da molécula de EuCl6	35
5.2 Análise Térmica dos parâmetros de intensidade por meio da utilização do modos norr de vibração da molécula	nais 38
6. CONCLUSÕES	60
REFERÊNCIAS	61

1. INTRODUÇÃO

Os átomos que compõe a tabela periódica estão divididos em grupos, os quais são agrupados de acordo com suas propriedades físicas e químicas. Sendo que nesse trabalho foi realizado a pesquisa com os elementos do grupo dos lantanídeos que possuem a oxidação, +2, +3 e +4, onde a forma trivalente é a mais estável entre os níveis de oxidação desses elementos.

Uma das características importantes está relacionada com a camada 4f desses átomos que estão incompletas, onde isso permite que os elétrons dessa camada sofram efeito de blindagem pelas camada mais externas 5s e 5p, diminuindo assim a interação dos elétrons da camada 4f com os elétrons do ligante, possibilitando transições eletrônicas discretas 4f-4f, que são transições proibidas por momento angular e também pela regra de Laporte. Essas transições são relevantes para os mecanismos que compõe a teoria de Judd-Ofelt, como também para a parte de desenvolvimento dos métodos de cálculos que abordam a teoria de Judd-Ofelt e os efeitos térmicos em relação aos parâmetros de intensidade.

Ao longo dos anos, surgiu uma teoria que considerava que os orbitais 4f dos lantanídeos, não eram puros, mas sim uma mistura das funções de onda entre os orbitais 4f e 5d. Assim, a paridade dos estados da mistura não seria mais bem definidas como para os estados puros, logo as transições poderiam ocorre por mecanismo de dipolo elétrico forçado, essa teoria foi conhecida como teoria de Judd-Ofelt. (CAMARGO, 2003).

Judd-Ofelt (PEACOCK,1974), fizeram uma dedução teórica que permitiu calcular as contribuições do momento de dipolo elétrico para analisar as intensidades espectrais discretas 4f-4f. Estabeleceram assim, uma regra de seleção para estados de momento angular, inicial e final, em uma transição eletrônica. Outra contribuição para essa teoria foi a de Jorgensen e Judd, que consideraram os efeitos da polarização dos ligantes, produzida pelo campo eletromagnético incidente, sobre a transição eletrônica 4f-4f, explicando o que foi chamado de hipersensibilidade aos ambientes químicos. Como resultado, os autores introduziram o mecanismo denominado de pseudo-quadrupolo ou, como chamado atualmente, acoplamento dinâmico. Ambas as teorias são a base para o entendimento das intensidades f-f. (PEACOCK, 1974).

Alguns modelos foram desenvolvidos ao longo dos anos para explicar os efeitos estruturais e da natureza do ambiente químico, que são essenciais para determinar os parâmetros de intensidade previsto na teoria de Judd-Ofelt, Ω_{λ} onde λ (2,4 e 6). O JOYSpectra

(JOYSpectra), é um software desenvolvido para o cálculo teórico dos parâmetros de intensidade Ω_{λ} , com base na teoria de Judd-Ofelt, mecanismo de dipolo elétrico forçado (FED) e mecanismo do acoplamento dinâmico (DC). O programa usa os modelos *Simples Overlap Model* (SOM) (MALTA, 2002) e *Bond Overlap Model* (BOM) (MOURA,2016), para a descrição do campo ligante, sendo que ambos os modelos levam em consideração os efeitos de covalência.

Com base no código de programação do JOYSpectra foi desenvolvido dois algoritmos correspondentes a utilização dos efeitos térmicos em compostos com lantanídeos para compreender de forma efetiva a mudança Ω_{λ} , principalmente para sistemas centrossimétricos, que teoricamente devem apresentar parâmetros de intensidades nulos. Esse programa é útil tanto para o entendimento teórico dos mecanismos sobre as configurações eletrônicas dos lantanídeos, quanto para o entendimento de resultados experimentais de propriedades espectroscópicas. O programa é gratuito e possui recursos relevantes que facilitam a compreensão das informações físicas e químicas por traz Ω_{λ} .

O algoritmo Cubo variacional, busca a partir de variações geométricas em uma região espacial no formato de um cubo localizada no ligante, calcular em cada passo os Ω_{λ} , onde a mudança do tamanho do cubo é diretamente proporcional à variação da temperatura. Contudo o algoritmo dos Modos Normais, leva em consideração os vetores correspondentes a cada modo normal para realizar pequenas variações ao longo desse vetor criando assim conformações geométricas correspondentes a cada modo de vibração da molécula, onde esses deslocamentos ao longo do vetor se correlacionam com a temperatura, frequência, massa reduzida e a constante de força. Ambos algoritmos criados objetivam compreender os parâmetros de intensidade de acordo com efeito térmicos, sendo abordagens diferentes pela metodologia do algoritmo no modo de variação da geometria.

2. OBJETIVOS

2.1 Geral

Desenvolvimento, implementação e testes de dois algoritmos que buscam a partir dos efeitos térmicos realizar variações geométricas de estruturas com íons lantanídeo, para compreender os Ω_{λ} .

2.2 Específicos

• Análise da implementação dos algoritmos (Cubo Variacional e Modos normais distorcidos).

• Analisar do composto de coordenação EuCl₆ com o algoritmo do cubo variacional, para comparação com dados de Carneiro Neto, 2019.

• Analisar uma série de compostos de coordenação $[Eu(H_2O)_8]^{3+}$, $[Eu(ACAC)(H_2O)_6]^{2+}$, $[Eu(ACAC)_2(H_2O)_4]^+$, $[Eu(ACAC)_3(H_2O)_2]$, $[Eu(ACAC)_4]^-$, com o algoritmo dos modos normais, para avaliar a mudança dos Ω_{λ}

3. FUNDAMENTAÇÃO TEÓRICA

3.1 Abordagem do método da DFT

Nessa teoria é usada a densidade eletrônica (ρ) para descrever a energia total do sistema. Assim, a equação de Schrondiger é expressa em termos de densidade eletrônica, tornando-se um conjunto de equações chamadas de equações de Kohn–Sham (COUTINHO, 2007), que são resolvidas de forma iterativa, partindo-se de uma estimativa inicial e continuando até que sejam auto consistentes. Os métodos baseados na DFT (do inglês, *Density Functional Theory*, DFT) são implementado de forma eficiente em pacotes de cálculos não-comerciais, como o GAMESS, NWCHEM, GAUSSIAN e outros, fazendo assim com que o método se torne cada vez mais popular para resolver os problemas de interesse químico (SHRIVER; ATKINS, 2003; MORGON; COUTINHO, 2007).

As equações de Kohn-Sham trouxeram uma revolução para o entendimento da estrutura eletrônica de átomos, moléculas e sólidos (PEDROZA, 2016). Na DFT, parte-se de propostas para o funcional F[ρ], escrito da seguinte forma:

$$F[\rho] = \frac{1}{2} \int \rho(\mathbf{r})\nu(\mathbf{r} - \mathbf{r}')\rho(\mathbf{r}')d^3rd^3r' + T_0[\rho] + E_{xc}[\rho]$$
(1)

em que $T_0[\rho]$ é o funcional da energia cinética e o $E_{xc}[\rho]$ descreve o funcional da energia de troca-correlação.

Na aproximação de elétrons não interagentes (não ocorre interação entre os elétrons), os estados físicos de cada um deles pode ser descrito por funções φ i(r). A equação 7 (PEDROZA, 2016), descreve a solução para equação de Schrödinger em unidades atômicas, com i= 1,2,3,...,N.

$$\left(-\frac{1}{2}\nabla^2 + w_{efe}(r)\right)\phi\mathbf{i}(\mathbf{r}) = E_i\phi\mathbf{i}(\mathbf{r})$$
(2)

em que $w_{efe}(r)$ são os potenciais locais (efetivos) que podem ser descritos pelo princípio variacional (PEDROZA, 2016) e são escritos da seguinte forma:

$$w_{efe}(r) = V_H(r) + w(r) + v_{xc}(r)$$
(3)

Assim, as equações 4 e 5 descrevem as equações de Kohn-Sham que são utilizadas por métodos computacionais, sendo elas resolvidas de forma iterativa (MORGON; COUTINHO, 2007), partindo de uma proposta inicial para as funções φ i(r), e resolvendo as equações 4 e 6 até que o valor da energia não se altere mais. Este procedimento é chamado de Campo Autoconsistente.

$$\rho(\mathbf{r}) = \sum_{i=1}^{N} |\phi_i(\mathbf{r})|^2$$
(4)

$$\left(-\frac{1}{2}\nabla^2 + V_H(r) + w(r) + v_{xc}(r)\right)\varphi \mathbf{i}(\mathbf{r}) = E_i\varphi \mathbf{i}(\mathbf{r})$$
(5)

Na DFT os primeiros funcionais que surgiram tentaram reproduzir o comportamento assimptótico o qual depende de um único parâmetro. A partir desse iniciou-se o desenvolvimento de novos funcionais um deles é o LYP desenvolvido por Lee, Yang e Parr [LEE; YANG; PARR, 1998], outro foi PBE desenvolvido por Perdew, Burze e Ernzerhof [PERDEW; BURKE; ERNZERHOF, 1996] que é bastante utilizado para sistemas moleculares em estado sólido. Estes funcionais são chamados de funcionais Puros.

Os funcionais híbridos surgiram a partir da combinação dos funcionais puros com os termos de Hartree-Fock. Esses funcionais descrevem de forma mais precisa as propriedades moleculares, energias de atomização, distância de ligação e frequência de vibração [KOHANOFF, 2006]. Alguns desses funcionais híbridos são o B3LYP, O3LYP, PBE0 e outro funcional que inclui a interação de curto e longo alcance como também o termo de dispersão onde tenta reproduzir os efeitos de Van der Walls, que é bastante utilizado pelos químicos computacionais é o WB97XD. A equação 6 descreve de forma geral esses funcionais híbridos.

$$E_{XC}^{hib} = \alpha E_X^{HF} + (1 - \alpha) E_X^{DFT} + E_C^{DFT}$$
(6)

3.2 Parâmetros de Intensidade Judd-Ofelt e as contribuições dos modelos BOM e SOM

Os parâmetros de intensidade (Ω_{λ}) foram desenvolvidos na teoria de Judd e Ofelt para entender as transições espectrais discretas do tipo f-f. Essa teoria leva em consideração duas contribuições principais: O dipolo elétrico forçado e (FED) e o mecanismo do acoplamento dinâmico (DC). As integrais de recobrimento entre as subcamada de valência do átomo ligante e a subcamada 4f do íon lantanídeo é definido no Modelo Simples de Recobrimento (SOM) (MALTA,1982; MALTA,1982) para o campo ligante, com $\rho\approx0,05$. O parâmetro que define o centroide da carga de sobreposição é $\beta \approx 1$, as quantidades Ω_{λ} são os chamados parâmetros de intensidade de Judd-Ofelt (MALTA,1982; MALTA,1982; De Sá, 2000).

As equações 7-9 descrevem como são calculados os parâmetros de intensidade teóricos, levando em consideração a parte ímpar do campo ligante, que é expressa pelos parâmetro ímpar γ_p^t do Hamiltoniano do FED e pelo $\delta_{t,\lambda+1}$ do Hamiltoniano do DC. A parte que descreve as energias é a pela parte par do campo ligante (Malta, 1982).

$$\Omega_{\lambda}^{\text{theo}} = (2\lambda + 1) \sum_{\text{t,p}} \frac{|B_{\lambda \text{tp}}|}{2\text{t} + 1}, \qquad B_{\lambda \text{tp}} = B_{\lambda \text{tp}}^{\text{FED}} + B_{\lambda \text{tp}}^{\text{DC}}$$
(7)

$$B_{\lambda tp}^{FED} = \frac{2}{\Delta E} < r^{t+1} > \Theta(t, \lambda) \gamma_p^t$$
(8)

$$B_{\lambda tp}^{DC} = -\left[\frac{(\lambda+1)(2\lambda+3)}{(2\lambda+1)}\right]^{\frac{1}{2}} < r^{\lambda} > (1-\sigma_{\lambda}) < f \left| \left| C^{(\lambda)} \right| \right| f > \Gamma_{p}^{t} \,\delta_{t,\lambda+1} \tag{9}$$

O valor de ΔE , encontrado na equação 8, do dipolo elétrico forçado, representa a média das energias. $\Theta(t,K)$ são fatores numéricos dependentes apenas do íon lantanídeo, os índices t e p são os ranques dos harmônicos esféricos em γ_p^t , em que a simetria é contabilizada nas equações do FED e DC (Moura, 2016).

Uma das contribuições realizados por Moura, 2016 foi introduzir os efeitos de covalência para os termos $\gamma_p^t \in \delta_{t,\lambda+1}$. Este último, presente no mecanismo DC, é contabilizado pelo Modelo de Recobrimento da Ligação (do inglês, *Bond Overlap Model* – BOM), como ilustrado na figura 1.

Figura 1. Representação dos efeitos de covalência introduzidos pelo modelo BOM ao mecanismo de acoplamento dinâmico.

O modelo BOM introduziu as contribuições da polarizabilidade de recobrimento (α_{OP}) e polarizabilidade efetiva do ligante (α '). Com essa inclusão ao mecanismo DC, os fatores de blindagem (1 - σ_{λ}) devem ser retirados da equação 9, pois a blindagem é naturalmente levada em consideração no parâmetro α_{OP} , através da integral de recobrimento ρ , na equação 10. Assim, a contribuição efetiva do modelo BOM é dada pela equação 11 (Moura, 2016).

$$\alpha_{\rm OP} = \frac{e^2 \rho^2 R^2}{2\Delta E} \tag{10}$$

$$B_{\lambda t p}^{DC} = -\left[\frac{(\lambda+1)(2\lambda+3)}{(2\lambda+1)}\right]^{1/2} \langle r^{\lambda} \rangle \langle f || C^{(\lambda)} || f \rangle \left(\frac{4\pi}{2t+1}\right)^{\frac{1}{2}} \left(\sum_{j} \frac{\left[(2\beta_{j})^{t+1}\alpha_{OPj} + \alpha_{j}'\right]Y_{pj}^{t*}}{R_{j}^{t+1}}\right) \delta_{t,\lambda+1} \quad (11)$$

Na equação 10, o ρ , $\Delta \epsilon$ e R, são a integral de recobrimento entre as camadas de valência, a energia de excitação corresponde à pseudo-diatômica (Ln–L) e a distância do íon ao átomo ligado na primeira esfera de coordenação, respectivamente. A figura 2 ilustra esses parâmetros para uma ligação do tipo A–B. (Moura, 2016; Malta, 2002).

Figura 2. Representação dos parâmetros de recobrimento de ligação.

O modelo simples de recobrimento (SOM), trata o fator γ_p^t da equação 8 na forma da equação 12,

$$\gamma_p^t = \left(\frac{4\pi}{2t+1}\right)^{1/2} \sum_j e^2 g_j \rho_j (2\beta_j)^{t+1} \frac{Y_{pj}^{t*}(\theta_j, \varphi_j)}{R_j^{t+1}}$$
(12)

em que o g é um fator de carga localizado em R/(2 β) e $\beta = 1/(1\pm\rho)$. O SOM também considera os efeitos da covalência através do produto g $\rho(2\beta)^{t+1}$. (MALTA,1982; MALTA,1982).

3.3 Modelo de deslocamento da geometria de equilíbrio

Um novo modelo teórico descreve a influência da temperatura sobre os parâmetros de intensidade de Judd-Ofelt (Carneiro Neto, 2019), sendo realizado a partir de pequenos deslocamentos nas configurações espaciais do ponto de equilíbrio. Esses deslocamentos são aleatórios, mas limitados por um volume L³ centralizados em cada átomo ligado ao lantanídeo na primeira esfera de coordenação. Portanto, os parâmetros de intensidades, nessa aproximação, são obtidos por uma média das configurações espaciais de N, descrito na equação 13.

$$\overline{\Omega}_{\lambda} = \frac{1}{N} \sum_{i=1}^{N} \Omega_{\lambda}(i)$$
(13)

O somatório dos $\Omega_{\lambda}(i)$ é dado pela configuração da geometria de equilíbrio, (x_i,y_i,z_i). Os deslocamentos máximos em cada direção x, y, z é limitado pelas arestas do cubo que envolve o comprimento L, (x₀ ± L, y₀ ± L, z₀ ± L), sendo consistentes com o deslocamento térmico e fatores de Debye-Waller. O programa JOYSpectra permite a realização de simulação desse efeito produzindo um grande número (N≈10⁶) de configurações espaciais (Carneiro Neto, 2019). Assumindo a aproximação do oscilador harmônico, o valor de L pode ser associado à temperatura T, como descrito na equação 14.

$$L = \sqrt{\left(\frac{\hbar}{M_r \overline{\omega}}\right) \left[\left(\frac{1}{e^{\frac{\hbar \overline{\omega}}{k_b T}} - 1}\right) + \frac{1}{2} \right]}$$
(14)

em que M_r é massa reduzida da diatômica Ln–L(átomo ligado) e $\overline{\omega}$ é uma frequência de fônon média associada a essa massa reduzida efetiva. Nesse modelo, como mencionado, pretende-se levar em consideração os efeitos térmicos e as distorções ao longo da primeira esfera de coordenação. Tal modelo pressupõe um modo coletivo de oscilações massa-mola, sendo uma representação de fônon óptico. Auzel (1980) salienta que, embora tais modelos ópticos sejam localizados, são de muita valia, principalmente na presença de um centro de inversão, caso em que as interações vibrônicas são relevantes. Dessa forma, esse modelo é bastante útil na interpretação de dados espectrais experimentais, particularmente em íons lantanídeos que ocupa um centro de inversão.

3.4 Modelo de distorção geométrica utilizado os modos normais de vibração com efeitos térmicos no cálculo de parâmetros de intensidades

Formalmente, os parâmetros de intensidade são independentes da temperatura, exceto pela fraca interação vibrônica. Porém, os efeitos térmicos podem induzir alterações conformacionais que, por exemplo, podem permitir que sistemas centrossimétricos a depender da temperatura acessem deformações geométricas de Ω_{λ} com valores não-nulos [GRZYB, 2018; CARNEIRO NETO, 2019]. A inclusão dos efeitos térmicos e de dispersão na posição dos ligantes em compostos inorgânicos com lantanídeos foram propostos considerando médias dos parâmetros de intensidades calculados para várias conformações. Tais conformações, são obtidas adicionando, de forma aleatória, deslocamentos aos átomos diretamente ligados ao Ln³⁺. O deslocamento máximo inicialmente foi definido de forma comparativa com resultados experimentais de cristalografia de Raios-X [SHYICHUK, 2016]. Uma segunda proposta foi utilizar pequenos espalhamentos ao redor da geometria de equilíbrio, em que os limites de espalhamento foram definidos seguindo uma distribuição populacional de Bose-Einstein [CARNEIRO NETO, 2019]. Essa abordagem reproduziu satisfatoriamente os resultados experimentais de propriedades fotofísicas de elpasolitas a 77 K e 300 K [CARNEIRO NETO, 2019]. Embora satisfatórios, essas abordagens não levam em consideração que as configurações geométricas que representam deformações mais intensas da geometria de equilíbrio podem ser pouco acessíveis termicamente. Adicionalmente, a dispersão totalmente aleatória não permite mapear qual nível vibracional contribui de forma mais efetiva para as alterações térmicas nas propriedades fotofísicas.

Ao se obter os modos normais de vibração através de cálculos realizados por programas como MOPAC ou GAUSSIAN, cada modo determinado por Q_i tem a constante de força (k_i),

massa reduzida (μ_i), frequência de vibração (υ_i) e vários N vetores de deslocamento (υ_{Ai}), correspondente a cada átomo do sistema.

Essa nova proposta considera os efeitos de dispersão térmica na posição dos átomos ligados ao lantanídeo, incluindo pesos populacionais associados a cada conformação geométrica diferente, descritos na equação, 15. Para isso, é possível usar a população de Boltzmann:

$$p_i = \frac{e^{\frac{-E_i}{k_b T}}}{\sum_j^M e^{\frac{-E_j}{k_b T}}}$$
(15)

em que E_i é a energia do *i*-ésimo estado, M é o número total de estados, k_b é a constante de Boltzmann e T a temperatura.

Usando p_i é possível calcular a média ponderada de diferentes propriedades, incluindo os parâmetros de intensidades teóricos provenientes da teoria de Judd-Ofelt [JUDD, 1962; OFELT, 1962]. A média ponderada dos parâmetros de intensidades $\overline{\Omega}_{\lambda}$ pode ser escrita na forma:

$$\overline{\Omega}_{\lambda} = \sum_{i}^{M} \mathbf{p}_{i} \Omega_{\lambda, i} \tag{16}$$

em que p_i são as populações de Boltzmann das diferentes *i* conformações geométricas. Os valores $\Omega_{\lambda,i}$ são os parâmetros de intensidades teóricos para a *i*-ésima conformação geométrica.

3.4.1 Gerando as *i* conformações: usando os Q_i

As conformações serão geradas ao longo dos modos normais de vibração, realizando-se passos discretos (dr) ao longo dos vetores deslocamento v_{Ai} dos modos normais. Sendo R_0 as coordenadas cartesianas da geometria de equilíbrio, as coordenadas da *i*-ésima conformação pode ser escrita na forma R_i .

$$R_i = R_0 + dr_i \cdot Q_{i,i} \tag{17}$$

Na equação 17, o índice *i* representa a conformação geométrica e o índice *j* representa o modo normal de vibração. Para gerar as conformações geométricas, pode-se utilizar o Algoritmo de Metropolis [METROPOLIS, 1949]. Para tal, as conhecidas etapas básicas podem adotadas, no algoritmo que foi implementado no JOYSpectra.

1. Gera-se um dr_i aleatório. Esse valor pode ser gerado entre os limites $-r_{max} < dr_i < r_i$ $r_{máx}$. O valor de máximo é gerado a partir da equação 18, onde é escolhido de forma aleatória dentro dos limites de $-r_{máx}$ e r_{max} o valor dos deslocamentos discretos (dr).

$$r = \sqrt{\frac{-\log 10^{-6} * k_b * T}{k_j * 10^{-18}}}$$
(18)

Nessa equação 18, é utilizado k_b (constante de Boltzman), k_i (constante de força do modo normal) e T (temperatura), para calcular o valor delimitado que é utilizado para o deslocamento no vetor do modo normal de vibração.

- 2. Calcula-se a probabilidade $\mathcal{P}_i = exp\left(\frac{-E_i}{k_bT}\right)$ a partir de $E_i = k_j \cdot dr_i^2$. Aqui, a energia é obtida usando a constante de força do modo normal e $\left| \frac{\partial^2 E}{\partial r^2} \right| = k$ considerando o regime de oscilador harmônico, como $\partial^2 E = k \cdot \partial r^2 = (k \cdot \partial r) \cdot \partial r$ descrita ao lado. Destaca-se o que os modos normais são obtidos para a molécula em um mínimo local de energia $\int_{R_0}^{R_i} \partial^2 E = \left(\int_{R_0}^{R_i} k \cdot \partial r \right) \cdot \partial r = (k \cdot \partial r) \cdot \partial r$ (R_0) . Assim, o valor de energia do mínimo, sem o $\partial E = (k \cdot dr) \cdot \partial r \quad \therefore dr = R_i - R_0$ deslocamento geométrico dr, é definida como $E_a = 0$, $\int_{R_0}^{R_i} \partial E = \int_{R_0}^{R_i} (k \cdot dr) \cdot \partial r$ sendo $\Delta E = E_{R_i} \equiv E_i;$ $\Delta E = k \cdot dr^2 \qquad \qquad \therefore \Delta E = E_{R_l} - E_{R_0}$
- 3. Gera-se um número aleatório $0 < t_i < 1$;
- 4. Testa-se se $t_i \leq \mathcal{P}_i$. Se sim, aceita-se o deslocamento dr_i e sua energia E_i . Se $t_i > \mathcal{P}_i$, retorna-se ao passo 3;
- 5. Se o deslocamento dr_i for aceito, utiliza-se a equação 17, para obter as coordenadas da nova conformação;
- 6. Com as coordenadas da conformação (R_i) é calculado os parâmetros de intensidade $\Omega_{\lambda,i}$ usando a equação 7;
- 7. Utiliza-se a equação 15 para calcular os p_i e a equação 16 para calcular os valores $\overline{\Omega}_{\lambda}$;

Dessa forma, pode-se sortear na ordem de $10^4 - 10^6$ pontos por modo normal para calcular $\overline{\Omega}_{\lambda}$ descrito pela média ponderada da equação 16. Destaca-se que a inclusão dos efeitos térmicos nos $\overline{\Omega}_{\lambda}$ permite utilizar o $\overline{\Omega}_{\lambda}^{FED}$ para efetuar os cálculos das taxas de transferência de energia incluindo efeitos térmicos. É importante notar que a modelagem apropriada do sistema e consequente descrição mais precisa do Ω_{λ}^{FED} pode alterar conclusões sobre o tipo de mecanismo

de transferência de energia dominante em determinados sistemas, visto que essa quantidade compõe somente o mecanismos de dipolo-dipolo.

3.5 Teoria utilizada pelo JOYSpectra

O programa JOYSpectra utiliza a teoria de Judd-Ofelt para calcular os Ω_{λ} que são dependentes da natureza do ambiente químico e do lantanídeo. A partir do momento que o composto não apresentar centro de inversão, a regra de seleção Laporte é relaxada logo as contribuições que para intensidades 4f-4f são os mecanismos FED e o DC.

O mecanismo FED surge quando ocorre uma mistura significativa das configurações eletrônicas 4f e 5d, resultando na quebra de simetria esférica da molécula relaxando a regra de Laporte em sistemas não centrossimétricos (MOURA, 2016).

O mecanismo DC aparece da contribuição de recobrimento da ligação envolvendo o ligante com o lantanídeo, sendo diretamente relacionada com a covalência da ligação e nessa perspectiva os modelos SOM (MALTA, 1982; MALTA, 1982) e BOM (MOURA, 2016) estão relacionados com os mecanismos FED e DC, respectivamente. O programa JOYSpectra carrega esses modelos que contribuem significativamente para entendimento dos parâmetros de intensidades teórico, como também é possível estimar com esses modelos utilizando as equações 7, 8 e 11 as contribuições dos mecanismos FED e DC dos parâmetros de intensidade (MOURA, 2016; De Sá, 200).

O JOYSpectra é capaz de calcular o valor de g (quantidade de carga - FED) e α ' (polarizabilidades efetivas do núcleo - DC) através de cálculos totalmente teóricos ou por procedimentos de ajustes. As quantidades de carga g, podem ser obtidas por meio das constantes de força através do conceito de valência específica (MOURA,2016; MALTA, 2002), pela equação 19.

$$g = R \sqrt{\frac{k}{2\Delta\varepsilon}}$$
(19)

em que R é a distância de ligação Ln–L na primeira esfera de coordenação, $\Delta \varepsilon$ é uma diferença de energia postulada pelo modelo associada ao baricentro do menor dipolo elétrico de energias de excitação permitidas e o valor de k é a constante de força no modo normal localizado associado ao modelo pseudo-diatômico (MOURA,2016), obtida pela segunda derivada da energia em função da distância.

3.6 Distribuição populacional de Bose-Einstein e Maxwell-Boltzmann

As distribuições populacionais dependem da natureza dos elementos constituintes no caso de sistemas de osciladores harmônicos em regimes de altas variações de temperatura, além das correlações decorrentes do princípio de exclusão de Pauli. (CARUSO, 2018).

As distribuições populacionais de partículas podem ser sintetizadas na equação 20.

$$\langle n_e \rangle = \frac{1}{e^{(\varepsilon/KT)} + a} \tag{20}$$

A distribuição de Maxwell–Boltzmann (caso em que a = 0) descreve o comportamento da população média de partículas que não interagem em vários estados de energia e em sistemas em equilíbrio térmico. Essa distribuição se aplica quando as temperaturas são elevadas ou com baixa densidade de partículas. Já a distribuição de Bose–Einstein (caso em que a = -1) descreve a população média de partículas indistinguíveis e não interativas de ocupar estados de energia discretos e possíveis no equilíbrio termodinâmico (CARUSO, 2018). Para regimes de temperatura elevados a distribuição de Bose–Einstein tende ao mesmo comportamento da de Maxwell–Boltzmann.

3.7 Modos normais de vibração das moléculas

As vibrações das moléculas são descritas em caráter dos graus de liberdade internos definidos para cada molécula, onde são obtido por uma regra geral 3n-6 e 3n-5, que são respectivamente de composto não lineares e lineares. Assim cada átomo possui intrinsicamente 3 graus de liberdade, sendo uma molécula com n átomos haverá 3n graus de liberdade. Os graus de liberdade das moléculas são responsáveis por alterar a distância entre os átomos e ângulos entre as ligações, sendo que possuem frequência específicas para cada composto (LARKIN,2011).

Devido a essa característica dos modos normais de vibração, os deslocamentos de cada átomo ocorre de forma periódica, passando simultaneamente pela posição de equilíbrio. Os centro de massa não se move e a molécula também não gira, logo os deslocamentos dos átomos em função do tempo são representados por onda senoidal, descritos como osciladores harmônicos simples. As frequências vibracionais do composto molecular dependem de sua massa atômica, da geometria espacial e da força de ligação entre os átomos, assim é possível ter os níveis de energia vibracionais únicos de cada molécula. (LARKIN,2011)

Os movimentos vibracionais que os átomos possuem nas moléculas poliatômicas são de uma enorme complexidade. Sendo que os átomos apresentam movimentos que não estão em fase sincronizada e nem tanto movimento ciclicamente repetitivo. No entanto, as vibrações podem ser expressas como superposição das vibrações normais as quais são representadas por ondas estacionárias e possuem sua devidas frequências vibracionais (HASE,2004).

O modo de análise de coordenadas normais é a forma de procurar a composição destas vibrações normais em termos das coordenadas e da base escolhida no cálculo. O método é simplesmente uma ferramenta teórica e computacional, utilizada para entender as vibrações das moléculas e com isso acoplar aos métodos experimentais de espectroscopias de absorção no infravermelho e de espalhamento Raman (HASE,2004).

3.8 Desenvolvimento teórico do cálculo sobre a frequência e modos normais de vibração.

As vibrações em sistemas pequenos são descritos pelas equações do movimento da mecânica clássica, assim a partir dessas soluções é possível entender melhor a solução da mecânica quântica (WILSON, et al, 1980). Primeiramente consideramos que a energia cinética do sistema poliatômico é dado pela equação 21.

$$2T = \sum_{a=1}^{N} m_a \left[\left(\frac{d \,\Delta x_a}{dt} \right)^2 + \left(\frac{d \,\Delta y_a}{dt} \right)^2 + \left(\frac{d \,\Delta z_a}{dt} \right)^2 \right] \tag{21}$$

Contudo é conveniente mudar as variáveis de coordenadas $\Delta x_1,...,\Delta z_N$, para um conjunto de deslocamento cartesiano ponderado pelas massas um conjunto de $q_1,...,q_{3N}$, dados na equação 22. Assim os termos das derivadas dessas coordenadas podem ser expressos na energia cinética (WILSON, et al, 1980), como na equação 23.

$$q_1 = \sqrt{m_1 \Delta x_1}, \quad q_2 = \sqrt{m_2 \Delta y_2}, \quad q_3 = \sqrt{m_3 \Delta z_3} \quad \dots \quad q_{3N} = \sqrt{m_{3N} \Delta N_{3N}}$$
 (22)

$$2T = \sum_{i=1}^{3N} \dot{q}_i^2$$
(23)

A energia potencial equação 24, será alguma função dos deslocamentos dentro da aproximação harmônica. A representação dos deslocamentos cartesianos é representada por q_i (Δx , Δy , Δz). A matriz f_{ij} é chamada de matriz das constantes de força, cujo os elementos representam derivadas de segunda ordem da energia do sistema em relação às coordenadas das partículas (WILSON, et al, 1980).

$$2V = \sum_{i,j=1}^{3N} f_{ij} q_i q_j$$
(24)

Os movimentos simultâneos de Lagrange podem ser montados com a equação 25. Uma vez que T é uma função apenas das velocidades e V é uma função apenas das coordenadas. Podemos assim substituir as expressões para T e V (WILSON, et al, 1980), e obter a equação 26.

$$\frac{d}{dt}\frac{\partial}{\partial q_j} + \frac{\partial V}{\partial q_j} = 0 \qquad j = 1, 2, \dots, 3N$$
⁽²⁵⁾

$$\ddot{q} + \sum_{i=1}^{3N} f_{ij} q_i = 0, \quad j = 1, 2, ..., 3N$$
 (26)

As soluções para o conjunto de equações diferenciais lineares de segunda ordem são movimentos harmônicos simples para cada coordenada cartesiana (WILSON, et al, 1980), na forma da equação 27.

$$q_j = L_j \cos(\lambda^{1/2} + \varepsilon) \tag{27}$$

O Lj é a amplitude do movimento, $\lambda^{1/2}$ relaciona-se à frequência do movimento por $\nu = \lambda^{1/2}/2\pi$ e ϵ é a fase do movimento. Se a equação for substituída nas equações diferencias um conjunto algébrico é obtido, na equação 28. O δ_{ij} é o delta de Kronecker que torna-se igual à unidade se i = j, sendo zero se i ‡ j, (WILSON, et al, 1980).

$$\sum_{i,j=1}^{3N} (f_{ij} - m_i \delta_{ij} \lambda) L_i = 0$$
(28)

Para fins de cálculos computacionais é adotado forma de matrizes para essas equações para entender os movimentos do modos vibracionais (HASE,2004). Partindo da equação 29.

$$FL = ML\lambda \tag{29}$$

Onde o M representa uma matriz diagonal das massas atômicas associadas a coordenadas cartesianas dos átomos, λ representa uma matriz diagonal com os 3N possíveis valores de λ , podendo assim rearranjar essa equação 29, multiplicando pela matriz inversa de M⁻¹ e L⁻¹ (HASE,2004). Formando a equação 30.

$$L^{-1}(M^{-1}F)L = \lambda \tag{30}$$

O produto gerado pelas matrizes, $M^{-1}F$ são autovetores da matriz L e como autovalores da matriz λ . Seis valores de λ devem da resultados nulos, pois a equação envolve termos de coordenadas cartesianas que incluem movimentos de translação e rotação da molécula. (HASE,2004)

3.9 Modelo de análise vibracional no Gaussian

A análise vibracional implementada pelo Gaussian 98, necessita que geometria utilizada para a análise vibracional possua o mesmo nível de resolução teórica da geometria de equilíbrio otimizada, com o mesmo conjunto de base que as segunda derivadas são geradas. Os cálculos de frequência necessitam de métodos adequados para descrição da molécula a qual se desenvolve o estudo (GAUSSIAN, et al, 1998).

A matriz Hessiana equação 31, possui a segundas derivadas parciais do potencial V, referente aos deslocamento dos átomos em coordenadas cartesianas.

$$f_{cij} = \left(\frac{\partial^2 V}{\partial \xi_i \partial \xi_j}\right) \tag{31}$$

Essa matriz possui 3N x 3N, onde ξ_1 , ξ_2 , ξ_3 , ... ξ_n , são usados para os deslocamentos em coordenadas cartesianas, assim é possível concluir que as primeiras derivadas são zero. Por fim essas coordenadas cartesianas são ponderadas em função da massa (GAUSSIAN, et al, 1998).

É a partir da matriz que diagonaliza o momento de inércia do tensor, podemos assim determinar os vetores correspondentes as rotações e translações. Sendo conhecido os vetores é possível distinguir os modos normais de vibração, dos modos de rotação e de translação. Os cálculos dos momentos de inércia e os produtos de inércia, são obtidos por uma diagonalização da matriz do momento do tensor de inércia (I), gerando vetores correspondentes a translação e rotação infinitesimal da molécula (GAUSSIAN, et al, 1998).

$$I = \begin{pmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{pmatrix}$$

A geração de vetores que estão associados ao movimento de rotação dos átomos em coordenadas cartesianas, definidos na equação 32.

$$D_{i,j} = \left(\left(P_j \right)_i X_i - \left(P_j \right)_i X_j \right) / \sqrt{m_i}$$
(32)

Onde j = x, y, z. P é o produto de ponto das coordenadas dos átomos correspondentes ao centro de massa e X é a matriz utilizada para diagonalizar o momento tensor de inércia. Por fim uma ortogonalização de Schmidt é usada para gerar $N_{vib} = 3N - 6$ ou 3N - 5 (GAUSSIAN, et al, 1998).

A transformação da hessiana em coordenadas internas, utiliza-se das N_{vib} coordenadas correspondentes para as coordenadas internas a ser diagonalizadas, assim N_{vib} x N_{vib} , são sub matriz de f_{int}, que representa as constantes de forças das coordenadas internas. A matriz de transformação composta por autovetores de L, onde temos equação 33, como resposta a matriz diagonal A (GAUSSIAN, et al, 1998).

$$\mathbf{L}^{\mathrm{t}}\mathbf{f}_{\mathrm{int}}\mathbf{L} = \mathbf{A} \tag{33}$$

As frequências são calculadas a partir da equação 34, onde temos o número de onda (\tilde{v}) , comprimento de onda (λ) , e a frequência $v = \tilde{v}c$.

$$\tilde{v} = \sqrt{\frac{\lambda}{4 \, \pi^2 c^2}} \tag{34}$$

Os elementos da equação 35, I_{cart} são os vetores dos elementos dos modos normais em coordenadas cartesianas. A normalização de I_{cart} são utilizadas para cálculos de propriedades espectroscópicas, que incluem IR, Raman, força rotacional, atividade despolarizante e dipolo (GAUSSIAN, et al, 1998). A massa reduzida (μ_i) para o modo de vibração é calculada a partir de I_{cart} , com descrita na equação 36.

$$I_{cart,k,i} = \sum_{j}^{3N} \left(\frac{D_{k,j} L_{j,i}}{\sqrt{m_k}} \right)$$
(35)

$$\mu_i = \left(\sum_{k}^{3N} I_{cart,k,i}^2\right)^{-1} \tag{36}$$

As coordenadas utilizadas para calcular as constantes de força, massa reduzida, e os deslocamentos cartesianos são consistentes, a constante de força k (GAUSSIAN, et al, 1998), é obtida pela equação 37.

$$k_i = 4\pi^2 \tilde{v}^2 \mu_i \tag{37}$$

4. METODOLOGIA

O programa JOYSpectra foi desenvolvido em linguagem C, onde carrega diversos tipos de algoritmos e modelos SOM e BOM com aplicabilidade a compostos de coordenação com lantanídeos. Ambos modelos trazem contribuições nos mecanismo FED e DC, respectivamente, os quais são indispensáveis para entender os parâmetros de intensidades das transições f-f. As etapas de entrada do input nos cálculos do JOYSpectra, estão sintetizadas, passo a passo, na Figura 3.

Figura 3. Fluxograma de funcionamento do input do programa JOYSpectra, e sua teoria fundamentada do cálculo teórico.

* Experimental Ω_{λ} is required

O JOYSpectra permite através dos algoritmos realizar diferentes manipulações de geometria (SHYICHUK, et al, 2016), realizando alterações na simetria da molécula por distorções nas ligações, podendo assim acompanhar as variações dos parâmetros de intensidade à medida que são realizadas modificações na geometria. O programa identifica o grupo pontual do poliedro de coordenação, além de ser capaz de interagir com outros programas como GAUSSIAN e MOPAC.

4.1 Algoritmo de variação dos ligantes envolvendo Bose-Einstein

As modificações geométricas causadas por alterações da temperatura causam modificações nos parâmetros de intensidade. Nesse trabalho, foi desenvolvido um algoritmo em linguagem C denominado Cubo Variacional. Na figura 4 está presente uma parte referente

a manipulação da primeira esfera de coordenação do complexo. Para a inclusão desta funcionalidade no JOYSpectra inicialmente foi criada uma palavra chave CUBEEDGE no input que permiti a entrada de um valor de temperatura. Em seguida, na função do Cubo Variacional, foi implementado uma estrutura que permiti calcular o valor de L utilizando a equação 14, para cada ligação Ln–L. O algoritmo permite gerar valores de L para ligantes distintos em um mesmo complexo. O valor de L calculado é então utilizado como o comprimento da caixa que limita os movimentos aleatórios efetuados em cada ligante. Assim o movimento dos átomos ligantes está associado à uma temperatura fornecida pelo usuário diretamente no input. A funcionalidade da palavra-chave CUBEEDGE também permite que o usuário forneça diretamente o valor de L.

Após a inclusão do algoritmo, foram realizados cálculos com mudança de temperatura entre (77 K à 300 K) para a estrutura EuCl₆ da Elpazolita (Carneiro Neto, 2019).

Figura 4. Trecho do algoritmo referente a manipulação de geometria da esfera de coordenação da molécula (cubo variacional) em linguagem C.

```
1 for (i=1; i<=nconnect; i++){</pre>
 2
 3 🔻
            if (MTX CONNECT[i][0]==1){
 4
 5
 6
                   COORD_ATOMS_COMPLEX[sphe+1][1] = MTX_COORDS[MTX_CONNECT[i][1]][1];
 7
                   COORD_ATOMS_COMPLEX[sphe+1][2] = MTX_COORDS[MTX_CONNECT[i][1]][2];
 8
                   COORD_ATOMS_COMPLEX[sphe+1][3] = MTX_COORDS[MTX_CONNECT[i][1]][3];
9
10
11
12
                   str_atoms_complex[sphe+1] = str_atoms[MTX_CONNECT[i][1]];
13
14
15
                   INDEX COMPLEX[sphe+1] = MTX CONNECT[i][1];
16
17
18
                sphe++;
19
            }
20
21 •
        }
22
23
24
25
26
         str atoms complex[1]
                                    = str_atoms[1];
         COORD_ATOMS_COMPLEX[1][1] = MTX_COORDS[1][1];
27
28
         COORD_ATOMS_COMPLEX[1][2] = MTX_COORDS[1][2];
29
         COORD_ATOMS_COMPLEX[1][3] = MTX_COORDS[1][3];
30
31
```

4.2 Algoritmo de variações discretas nos vetores de deslocamento dos modos normais de vibração.

Nesse trabalho também foi desenvolvido um algoritmo denominado Modos Normais Distorcidos na figura 5, para compreender os parâmetros intensidade de Judd-Ofelt de acordo com a mudança de temperatura e os modos normais de vibração. Assim foram realizados cálculos de otimização de geometria utilizando funcional WB97XD com a base 6-311++G(d,p)e em seguida a frequências utilizando mesmo nível de cálculo da otimização no programa Gaussian, para a obtenção dos modos normais de vibração da molécula para a série de complexos [Eu(H₂O)₈]³⁺, [Eu(ACAC)(H₂O)₆]²⁺, [Eu(ACAC)₂(H₂O)₄]⁺, [Eu(ACAC)₃(H₂O)₂], [Eu(ACAC)₄]⁻. Assim é realizar a inclusão dos modos no arquivo de input do JoySpectra, na diretiva (NORMALMODES).

Na diretiva (CONFAVRG) é realizado a inclusão da palavra chave NORMAL_MODES, o valor da temperatura, e o número de movimentos aleatório confinados ao grau de liberdade da molécula. Permitindo que o programa consiga incluir esses parâmetros no algoritmo. Com os parâmetros de entrada inseridas no arquivo de input do JOYSpectra o algoritmo é inicializado utilizando dos modos normais, geometria da molécula, temperatura, constante de força, frequência e massa reduzida. Assim são gerado o valor de dr_i aleatório, permitindo pequenos deslocamentos nas coordenadas da geometria de equilíbrio, com relação ao movimento do modo normal.

Com isso o algoritmo permite calcular os valores dos parâmetros de intensidade de cada movimento aleatório de acordo com cada modo normal de vibração da molécula e obter um valor médio dos parâmetros de intensidade $\overline{\Omega_{\lambda}}$ a partir da equação 16, como também é possível ter para cada modo um valor associado aos parâmetros de intensidade.

Com a inclusão do algoritmo foram realizados cálculos a temperatura de 300K, para todos os modos normais com intuito de obter os Ω_{λ} , para o conjunto de moléculas, $[Eu(H_2O)_8]^{3+}$, $[Eu(ACAC)(H_2O)_6]^{2+}$, $[Eu(ACAC)_2(H_2O)_4]^+$, $[Eu(ACAC)_3(H_2O)_2]$, $[Eu(ACAC)_4]^-$.

Figura 5. Trecho do algoritmo referente a gerar um dr_i aleatório e a probabilidade de aceitação a partir do algoritmo de Metropolis (freqmods.h) em linguagem C.

```
1 for (j = 1; j <= NRAND; j++){
 2
 3
            count = 1;
 4
 5
            do{
 6
                  dr = fRand( -Drlim , Drlim );
E = (MTX_NMVAR[i][3]) * ( 1.0E-18 ) * (dr*dr) ;
 7
 8
                  Kt = kb * THERMAL_VAR;
9
                  P = exp(-E / Kt);
10
                  Ti = fRand(0,1);
11
12
13
                  count ++;
14
15
                  } while (Ti >= P);
16
17
            for (l = 1; l <= natoms; l++ ){</pre>
18
19
                  MTX_DISPLAC[1][1] = MTX_COORDS[1][1] + (dr * MTX_NMVECS[1][3*(i+1) -2]);
20
                  MTX_DISPLAC[1][2] = MTX_COORDS[1][2] + (dr * MTX_NMVECS[1][3*(i+1) - 1]);
MTX_DISPLAC[1][3] = MTX_COORDS[1][3] + (dr * MTX_NMVECS[1][3*(i+1) ]);
21
22
23
24
                  MTX_DISPLAC[1][1] = MTX_DISPLAC[1][1] - MTX_DISPLAC[1][1];
                  MTX_DISPLAC[1][2] = MTX_DISPLAC[1][2] - MTX_DISPLAC[1][2];
MTX_DISPLAC[1][3] = MTX_DISPLAC[1][3] - MTX_DISPLAC[1][3];
25
26
27
                  Rx = (MTX_DISPLAC[1][1] - MTX_COORDS[1][1]) * (MTX_DISPLAC[1][1] - MTX_COORDS[1][1]);
Ry = (MTX_DISPLAC[1][2] - MTX_COORDS[1][2]) * (MTX_DISPLAC[1][2] - MTX_COORDS[1][2]);
Rz = (MTX_DISPLAC[1][3] - MTX_COORDS[1][3]) * (MTX_DISPLAC[1][3] - MTX_COORDS[1][3]);
28
29
30
31
                  Rxyz[1][j] = sqrt(Rx + Ry + Rz);
32
33
34
35
                  }
36
```

5. RESULTADOS E DISCUSSÃO

5.1. Análise térmica dos parâmetros de intensidade da molécula de EuCl₆

A estrutura criada no algoritmo Cubo Variacional permite o cálculo de valores de L (comprimento da aresta do cubo), que são determinados para cada ligante. O diagrama de fluxo da funcionalidade envolvendo esse algoritmo está sintetizado na figura 6, em que, partindo do valor de temperatura ou de um comprimento fixo é possível dimensionar o tamanho das arestas do cubo para as distorções da estrutura de equilíbrio.

Com essa implementação, o programa recebe a funcionalidade de avaliar moléculas que apresentam centro de inversão, pois a estrutura geométrica de equilíbrio apresenta os parâmetros de intensidade Ω_{λ} , necessariamente iguais a zero. Assim, a simulação dos efeitos térmicas nos átomos ligantes é feita a partir de movimentos locais limitados pelo valor de L, que dependente da temperatura. Dessa forma, promovem-se distorções que retiram o poliedro de coordenação do centro de inversão e, consequentemente, possibilitam valores de Ω_{λ} diferentes de zero.

Com a implementação da estrutura do algoritmo no JOYSpectra, realizou-se uma análise dos valores teóricos dos parâmetros de intensidade com relação a variações de temperatura, entre 77 K e 300 K, para o sistema EuCl₆ presente na Elpasolita (Carneiro Neto, 2019). Na tabela 1 estão descritos os valores da temperatura T, Ω_{λ} e o comprimento da caixa L. Para a obtenção dos valores de L e Ω_{λ} , foram utilizados os valores de $\overline{\omega} = 100$ cm⁻¹, $\alpha' = 2,5$ Å³ e g = 1.

Temperatura (K)	L	$\overline{\Omega}_2$	$\overline{\Omega}_4$	$\overline{\Omega}_{6}$
77	0,090	0,339	0,020	0,014
87	0,093	0,362	0,022	0,016
97	0,097	0,396	0,024	0,017
107	0,100	0,440	0,026	0,019
117	0,104	0,445	0,027	0,019
127	0,107	0,516	0,031	0,022
137	0,111	0,512	0,031	0,022
147	0,114	0,536	0,033	0,023
157	0,117	0,598	0,036	0,026
167	0,120	0,641	0,038	0,028
177	0,124	0,637	0,039	0,028
187	0,127	0,697	0,042	0,030
197	0,130	0,718	0,044	0,031
207	0,133	0,757	0,047	0,033
217	0,136	0,770	0,048	0,033
227	0,139	0,791	0,049	0,034
237	0,141	0,880	0,054	0,038
247	0,144	0,901	0,055	0,039
257	0,147	0,950	0,055	0,041
267	0,150	0,942	0,057	0,041
277	0,152	0,979	0,060	0,042
287	0,155	1,054	0,063	0,046
297	0,157	1,079	0,064	0,047
300	0,158	1,083	0,066	0,047

Tabela 1. Valores teóricos dos parâmetros de intensidade Ω_{λ} , (λ =2, 4 e 6, em 10⁻²⁰ cm²) e do comprimento da caixa dimensional (L, em Å), para o ligante (Cl) do composto de lantanídeo EuCl₆ em diferentes temperaturas.

Observa-se que os valores teóricos obtidos para o comprimento da caixa (L) e do parâmetro de intensidade Ω_2 , pelo o algoritmo cubo variacional do JOYSpectra em relação as temperaturas de 77K e 300K, estão de acordo com o trabalho de Carneiro Neto, 2019, onde os valores para as temperaturas de 77K e 300K, são 0,408 e 1,277, respectivamente. Nesse intervalo de temperatura, pode-se notar um aumento $\overline{\Omega}_2$, $\overline{\Omega}_4 e \overline{\Omega}_6$, sendo que entre eles a variação mais significativa ocorre $\overline{\Omega}_2$ justamente por ser mais sensível a mudanças estruturais da geometria. Essas variações geométricas são mais intensas à medida que a temperatura aumenta, por haver maior grau de liberdade na movimentação do ligante. Isso cria um maior intervalo para os deslocamentos com relação a geometria de equilíbrio ($x_0 \pm L$, $y_0 \pm L$, $z_0 \pm L$), como visto na figura 7. Assim, o sistema centrossimétrico apresenta parâmetros de intensidades não nulos, sendo possível explicar os dados experimentais de parâmetros de intensidade não nulos para sistemas centrossimétricos. **Figura 7.** Ilustração do movimento vibracional causado por deslocamentos do ligante, em relação a um comprimento L, a partir da geometria de equilíbrio.

Um aspecto importante é o comportamento do L em função da temperatura (equação 18), usando os valores de massa reduzida e frequência média de fônon característicos de sistemas com osciladores do tipo Ln³⁺–L. Para tal, os mesmos valores utilizados para obter os resultados da Tabela 1 foram adotados para a variação de temperatura feita na Figura 8.

Figura 8. Comportamento do comprimento L (Å) x Temperatura (K), em relação a equação de população térmica.

remperatura (ix)

A temperaturas acima de 100K o comportamento da função tem um aumento gradativo, onde tende a um limite de crescimento linear e estagnação da função, conforme o valor da exponencial se aproxima de 1. Dessa forma, a proposta é importante na explicação de sistemas centrossimétrico e para explicar casos de dispersão térmica onde a população de Bose-Einstein tem a frequência médias de fônon e não atribuem diretamente um peso populacional para cada configuração fora do equilíbrio. Uma proposta para a melhoria da descrição do efeito térmico é ajustar o valor de ω , para descrever cada ligação envolvida, pois mesmo utilizando do valor médio de ω , os valores de L são tratados de forma distinta para cada ligante. A questão que

pode ser observada é que a temperatura de 100K tem um comportamento de função similar à de uma população de Boltzmann.

5.2 Análise Térmica dos parâmetros de intensidade por meio da utilização do modos normais de vibração da molécula.

A estrutura desenvolvida do algoritmo depende incialmente da inserção dos modos normais de vibração da molécula que são obtidos do programa Gaussian. O digrama de fluxo da funcionalidade envolvendo o algoritmo está mostrado de forma generalizada na figura 9.

Assim, partindo da incrementação dos modos normais na estrutura de input e de um valor da temperatura, é possível obter deslocamento aleatórios de cada modo normal da molécula.

Figura 9. Estrutura da fluxionalidade do funcionamento do algoritmo no programa JOYSpectra, para análise dos Ω_{λ} , para os modos normais de vibração.

Com esse algoritmo, o JOYSpectra, recebe um novo modelo de análise dos parâmetros de intensidade de moléculas que inicialmente apresentam Ω_{λ} nulos, devido a sua caracteristica de ser centrossimétrica, isso favorece uma análise com maior abragência de moléculas Ln-L. A simulação do movimento das moléculas está de acordo com cada modo normal de vibração e temperatura. Logo, a obtenção dos parâmetros de intensidade estão ligados ao modo em que a molécula vibra. Esses deslocamentos são realizados a partir da estrutura de partida a geometria de equilibrio. Com o modo de vibração, isso permite que a molécula obtenha a distorção necessária para sair do centro de inversão e consequentemente obter os parâmetros de intesidade para os modos de vibração da molécula.

Na figura 10, estão presentes as moléculas da série ACAC (acetilacetona), onde o poliedro de coordenação vária entre, $a = [Eu(H_2O)_8]^{3+}$, $b = [Eu(ACAC)(H_2O)_6]^{2+}$, $c = [Eu(ACAC)_2(H_2O)_4]^+$, $d = [Eu(ACAC)_3(H_2O)_2]$, $e = [Eu(ACAC)_4]^-$. Sendo sempre 8 átomos de oxigênio coordenando com o átomo de európio, formando assim a primeira esfera de coordenação dos complexos.

Figura 10. Série de complexos de európio, variando na inserção de moléculas acetilacetona, para análise dos parâmetros de intensidade teórico.

As tabelas 2 a 6, descrevem os valores dos parâmetros de intensidade de cada modo de vibração da molécula, como também os valores da frequência de vibração e constante de força. Esses valores destacados em cada tabela são importantes para discutir a relevância do modelo e entender como cada passo discreto (dr) da mudança da geometria de equilíbrio.

Modos Normais	v	k	Ω_2	Ω_4	Ω_6
G. de equilíbrio	-	-	0	6,736	0,821
1	45,221	0,006	0,273	6,885	0,922
2	53,482	0,008	0,230	6,847	0,898
3	81,617	0,019	0,204	6,821	0,884
4	92,433	0,024	0,205	6,813	0,880
5	92,610	0,024	0,178	6,804	0,872
6	101,636	0,035	0,188	6,799	0,867
7	114,797	0,036	0,177	6,794	0,862
8	118,547	0,043	0,167	6,791	0,858
9	118,620	0,043	0,167	6,789	0,856
10	125,045	0,043	0,165	6,787	0,853
11	125,171	0,043	0,162	6,784	0,851
12	132,881	0,042	0,159	6,778	0,849
13	138,463	0,046	0,147	6,775	0,847
14	210,773	0,030	0,137	6,772	0,845
15	215,280	0,032	0,131	6,770	0,843
16	262,855	0,163	0,124	6,768	0,842
17	264,505	0,159	0,118	6,766	0,841
18	268,484	0,207	0,112	6,764	0,840
19	268,495	0,209	0,107	6,763	0,839
20	270,736	0,054	0,102	6,761	0,838
21	270,809	0,054	0,097	6,760	0,837
22	292,016	0,322	0,094	6,759	0,837
23	309,506	0,181	0,090	6,758	0,836
24	309,541	0,181	0,087	6,758	0,835
25	320,928	0,364	0,084	6,757	0,835
26	331,191	0,068	0,081	6,756	0,834
27	331,418	0,068	0,078	6,755	0,834
28	373,379	0,084	0,075	6,755	0,833
29	456,518	0,140	0,073	6,754	0,833
30	463,795	0,128	0,071	6,753	0,833
31	475,364	0,152	0,069	6,753	0,832
32	480,246	0,156	0,067	6,752	0,832
33	480,347	0,156	0,065	6,752	0,832

Tabela 2. Valores teóricos da frequência (v) em cm⁻¹, constante de força (k) em N/m, temperatura = 300 K, $\alpha' = 1,5$, e os parâmetros de intensidade $\Omega_{\lambda_{2}}$ ($\lambda=2, 4 \text{ e } 6, \text{ em } 10^{-20} \text{ cm}^{2}$), referente ao complexo [Eu(H₂O)₈]³⁺ para cada modo normal de vibração

34	490,254	0,165	0,063	6,752	0,831
35	502,829	0,171	0,061	6,751	0,831
36	537,060	0,195	0,059	6,751	0,831
37	537,174	0,195	0,058	6,750	0,830
38	567,778	0,223	0,056	6,750	0,830
39	577,223	0,228	0,055	6,750	0,830
40	577,284	0,228	0,054	6,749	0,830
41	585,216	0,228	0,053	6,749	0,829
42	585,346	0,228	0,051	6,749	0,829
43	596,127	0,239	0,050	6,748	0,829
44	604,309	0,243	0,049	6,748	0,829
45	607,669	0,245	0,048	6,748	0,829
46	1684,797	1,819	0,047	6,748	0,828
47	1685,192	1,817	0,046	6,747	0,828
48	1685,224	1,817	0,045	6,747	0,828
49	1685,254	1,816	0,044	6,747	0,828
50	1687,982	1,826	0,043	6,747	0,828
51	1688,374	1,824	0,043	6,746	0,828
52	1688,438	1,824	0,042	6,746	0,828
53	1694,493	1,828	0,041	6,746	0,827
54	3804,523	8,911	0,040	6,746	0,827
55	3804,552	8,911	0,039	6,746	0,827
56	3804,801	8,914	0,039	6,746	0,827
57	3804,822	8,914	0,038	6,745	0,827
58	3805,492	8,919	0,038	6,745	0,827
59	3806,426	8,924	0,037	6,745	0,827
60	3806,446	8,924	0,036	6,745	0,827
61	3815,592	8,976	0,036	6,745	0,827
62	3876,103	9,587	0,035	6,745	0,826
63	3876,125	9,587	0,035	6,744	0,826
64	3876,247	9,588	0,034	6,744	0,826
65	3876,770	9,590	0,034	6,744	0,826
66	3877,292	9,592	0,033	6,744	0,826
67	3877,555	9,594	0,033	6,744	0,826
68	3877,787	9,596	0,032	6,744	0,826
69	3877,803	9,596	0,032	6,744	0,826

O complexo $[Eu(H_2O)_8]^{3+}$ apresenta na sua geometria de equilíbrio, grupo pontual que torna o parâmetro de intensidade de Ω_2 nulo. Mas quando analisamos os 69 modos vibracionais da molécula em temperatura ambiente, podemos notar que as pequenas variações (dr), que são feitas ao longo dos modos normais de vibração, produzem deformações na simetria, tornando Ω_2 não-nulo.

Diferente do modelo de deslocamento da geometria de equilíbrio a partir de uma caixa espacial (L) localizada nos átomos envolvidos diretamente na ligação com íon lantânideo, o modelo de deslocamento a partir dos modos normais de vibração, trata as mudanças geométricas de acordo com a vibração natural da molécula, onde os deslocamentos discretos estão direcionados na coordenada dos vetores presentes em cada grau de liberdade da molécula, como destacado na figura 11.

Figura 11. Exemplo de vetores deslocamentos de um dos modos normais de vibração que são utilizados para deslocar de forma discreta a molécula.

Na tabela 2, podemos destacar que os primeiros modos de vibração apresentam uma maior relevância quanto à influência nos Ω_2 , Ω_4 e Ω_6 . Esses modos envolvem as frequências 45,221 cm⁻¹ até 215,280 cm⁻¹. Nessa faixa temos que os vetores de deslocamentos do ligante possuem um movimento que envolve diretamente os átomos de O, que estão ligados ao íon de Eu³⁺, distorcendo com maior destaque a estrutura de equilíbrio da molécula, conseguindo assim alcançar maiores valores para os parâmetros de intensidade. Destaca-se que existe um peso populacional (p_i) relacionado a cada deslocamento, onde a energia desse modo se correlaciona de forma direta com a constante de força. Todos esses detalhes são necessários para a obtenção do parâmetro de intensidade da molécula. À medida que o modo não possui vetores de deslocamentos relacionados aos átomos da primeira esfera de coordenação, ou modos normais com valores com frequência altos, tem-se concavidade cada vez mais fechada, levando assim valores de p_i menores, causando assim tendência a linearidade dos valores dos parâmetros de intensidade.

Tabela 3. Valores teóricos da frequência (v) em cm⁻¹, constante de força (k) em N/m, temperatura = 300K, $\alpha' = 1,5$ para os O da H₂O, $\alpha' = 2,6$ para os O do ACAC e os parâmetros de intensidade $\Omega_{\lambda,}$ ($\lambda=2, 4 \text{ e } 6, \text{ em } 10^{-20} \text{ cm}^2$), referente ao complexo [Eu(ACAC)(H₂O)₆]²⁺ para cada modo normal de vibração.

Modos Normais	v	k	Ω_2	Ω_4	Ω_6
G. de equilíbrio	_	-	50,8519	7,9592	2,182
1	32,125	0,003	50,891	7,864	2,169
2	42,313	0,005	51,066	7,934	2,211
3	49,331	0,006	51,017	7,945	2,205
4	73,757	0,014	50,985	7,941	2,202
5	75,370	0,015	51,010	7,938	2,198
6	86,059	0,018	51,008	7,940	2,198
7	89,525	0,022	51,025	7,940	2,197
8	96,514	0,020	51,007	7,942	2,195
9	104,177	0,028	51,013	7,943	2,193
10	110,067	0,029	51,008	7,943	2,192
11	117,200	0,042	50,988	7,943	2,191
12	121,269	0,011	50,975	7,945	2,190
13	124,054	0,027	50,952	7,948	2,189
14	138,513	0,015	50,945	7,948	2,188
15	145,094	0,041	50,940	7,949	2,187
16	160,758	0,033	50,935	7,949	2,187
17	164,655	0,047	50,930	7,950	2,187
18	186,609	0,030	50,927	7,951	2,187
19	199,825	0,068	50,927	7,951	2,187
20	215,736	0,051	50,928	7,953	2,187
21	225,836	0,066	50,930	7,954	2,187
22	246,921	0,109	50,931	7,954	2,187
23	253,119	0,161	50,928	7,954	2,187
24	267,939	0,177	50,929	7,955	2,187
25	270,949	0,153	50,923	7,955	2,187
26	282,394	0,103	50,918	7,956	2,187
27	295,832	0,267	50,918	7,958	2,188
28	296,730	0,228	50,919	7,958	2,187
29	304,238	0,116	50,917	7,958	2,187
30	313,533	0,067	50,915	7,958	2,187
31	346,639	0,079	50,913	7,958	2,187
32	378,453	0,095	50,911	7,958	2,187
33	385,319	0,104	50,909	7,958	2,187
34	416,599	0,155	50,907	7,958	2,187
35	422,558	0,416	50,911	7,959	2,187
36	424,894	0,198	50,909	7,959	2,187

37	427,750	0,144	50,909	7,959	2,187
38	451,266	0,136	50,907	7,959	2,187
39	457,838	0,151	50,906	7,959	2,187
40	479,231	0,164	50,905	7,959	2,186
41	494,724	0,173	50,904	7,959	2,186
42	501,655	0,173	50,903	7,959	2,186
43	511,917	0,180	50,901	7,959	2,186
44	527,913	0,191	50,901	7,959	2,186
45	537,831	0,211	50,900	7,959	2,186
46	546,629	0,471	50,900	7,959	2,186
47	553,587	0,208	50,898	7,959	2,186
48	583,430	0,526	50,897	7,959	2,186
49	665,278	1,011	50,897	7,959	2,186
50	685,817	0,739	50,896	7,959	2,186
51	834,058	0,470	50,895	7,959	2,186
52	966,552	2,347	50,894	7,959	2,186
53	967,811	1,736	50,893	7,959	2,185
54	1041,521	0,965	50,892	7,959	2,185
55	1052,260	1,294	50,892	7,959	2,185
56	1057,436	1,273	50,891	7,959	2,185
57	1066,677	1,182	50,890	7,959	2,185
58	1240,059	1,329	50,889	7,959	2,185
59	1320,031	3,979	50,889	7,959	2,185
60	1392,068	3,032	50,888	7,959	2,185
61	1414,851	1,538	50,887	7,959	2,185
62	1417,915	1,608	50,887	7,959	2,185
63	1478,074	1,382	50,886	7,959	2,185
64	1479,720	1,359	50,885	7,959	2,185
65	1487,164	1,528	50,885	7,959	2,185
66	1492,548	1,517	50,884	7,959	2,185
67	1586,116	5,722	50,884	7,959	2,185
68	1608,298	5,471	50,883	7,959	2,185
69	1630,675	1,848	50,883	7,959	2,185
70	1646,602	1,762	50,882	7,959	2,185
71	1654,582	1,836	50,882	7,959	2,185
72	1660,077	1,799	50,881	7,959	2,185
73	1662,458	1,789	50,881	7,959	2,184
74	1667,797	1,783	50,880	7,959	2,184
75	3057,573	5,731	50,880	7,959	2,184
76	3062,528	5,744	50,880	7,959	2,184
77	3128,007	6,323	50,879	7,959	2,184
78	3130,313	6,343	50,879	7,959	2,184
79	3180,681	6,575	50,879	7,959	2,184
80	3183,038	6,581	50,878	7,959	2,184

81	3240,823	6,757	50,878	7,959	2,184
82	3812,184	8,979	50,878	7,959	2,184
83	3821,697	9,018	50,877	7,959	2,184
84	3842,517	9,103	50,877	7,959	2,184
85	3848,340	9,118	50,877	7,959	2,184
86	3849,200	9,121	50,876	7,959	2,184
87	3854,010	9,145	50,876	7,959	2,184
88	3934,250	9,878	50,876	7,959	2,184
89	3934,483	9,851	50,876	7,959	2,184
90	3937,017	9,896	50,875	7,959	2,184
91	3938,472	9,882	50,875	7,959	2,184
92	3940,492	9,901	50,875	7,959	2,184
93	3941,160	9,904	50,875	7,959	2,184

Tabela 4. Valores teóricos da frequência (v) em cm⁻¹, constante de força (k) em N/m, temperatura = 300K, $\alpha' = 1,5$ para os O da H₂O, $\alpha' = 2,6$ para os O do ACAC e os parâmetros de intensidade Ω_{λ} , (λ =2, 4 e 6, em 10⁻²⁰ cm²), referente ao complexo [Eu(ACAC)₂(H₂O)₄]⁺, para cada modo normal de vibração.

Modos Normais	v	k	Ω_2	Ω_4	Ω_6
G. de equilíbrio	-	-	62,2628	7,4394	4,1908
1	19,992	0,001	68,106	7,700	4,766
2	27,024	0,002	65,677	7,642	4,518
3	34,244	0,003	64,728	7,582	4,436
4	50,298	0,007	64,396	7,597	4,425
5	62,719	0,010	64,071	7,564	4,383
6	76,040	0,014	63,767	7,533	4,351
7	94,489	0,009	63,542	7,523	4,331
8	96,770	0,008	63,405	7,514	4,316
9	98,864	0,013	63,309	7,510	4,307
10	104,129	0,018	63,175	7,498	4,292
11	111,426	0,009	63,094	7,495	4,282
12	113,741	0,020	63,060	7,491	4,277
13	121,344	0,011	63,001	7,487	4,270
14	129,529	0,037	63,014	7,487	4,269
15	131,785	0,045	63,009	7,484	4,265
16	137,400	0,056	62,993	7,483	4,264
17	151,884	0,063	62,952	7,481	4,260
18	160,005	0,035	62,918	7,479	4,256
19	161,085	0,052	62,888	7,477	4,253
20	164,989	0,045	62,854	7,476	4,250
21	177,322	0,098	62,836	7,475	4,248
22	182,394	0,096	62,810	7,474	4,245

23	192,869	0,106	62,788	7,472	4,242
24	212,997	0,074	62,766	7,469	4,239
25	221,092	0,104	62,747	7,468	4,238
26	221,405	0,069	62,732	7,466	4,236
27	244,055	0,137	62,712	7,465	4,234
28	249,209	0,115	62,700	7,465	4,233
29	255,210	0,090	62,686	7,464	4,232
30	270,251	0,093	62,672	7,463	4,230
31	282,765	0,162	62,663	7,463	4,229
32	291,830	0,323	62,653	7,462	4,228
33	301,751	0,069	62,641	7,461	4,227
34	309,114	0,111	62,627	7,461	4,226
35	318,577	0,101	62,622	7,460	4,225
36	372,409	0,090	62,610	7,459	4,224
37	405,343	0,443	62,602	7,459	4,223
38	415,959	0,466	62,592	7,458	4,223
39	424,949	0,372	62,585	7,458	4,222
40	428,053	0,366	62,577	7,457	4,221
41	437,596	0,162	62,569	7,457	4,220
42	472,636	0,155	62,561	7,457	4,220
43	495,474	0,169	62,554	7,456	4,219
44	513,333	0,177	62,548	7,456	4,218
45	538,023	0,603	62,541	7,455	4,218
46	540,919	0,607	62,536	7,455	4,217
47	576,722	0,520	62,530	7,455	4,217
48	582,104	0,534	62,525	7,454	4,216
49	625,750	0,254	62,519	7,454	4,216
50	643,034	0,280	62,514	7,454	4,215
51	655,359	0,346	62,509	7,454	4,215
52	662,545	0,984	62,504	7,453	4,214
53	669,593	0,609	62,500	7,453	4,214
54	681,440	0,714	62,495	7,453	4,213
55	686,229	0,729	62,492	7,453	4,213
56	813,679	0,445	62,488	7,452	4,213
57	825,996	0,457	62,484	7,452	4,212
58	962,481	2,479	62,480	7,452	4,212
59	964,026	2,514	62,477	7,452	4,211
60	968,866	1,507	62,473	7,452	4,211
61	971,117	1,568	62,470	7,451	4,211
62	1037,623	0,959	62,466	7,451	4,210
63	1042,109	0,955	62,463	7,451	4,210
64	1049,222	1,281	62,460	7,451	4,210
65	1051,720	1,290	62,457	7,451	4,210
66	1052,546	1,340	62,454	7,450	4,209

67	1057,503	1,301	62,451	7,450	4,209
68	1061,484	1,187	62,448	7,450	4,209
69	1065,693	1,174	62,446	7,450	4,208
70	1240,457	1,260	62,443	7,450	4,208
71	1242,649	1,272	62,441	7,450	4,208
72	1311,312	3,759	62,438	7,450	4,208
73	1315,611	3,790	62,436	7,449	4,208
74	1397,922	1,447	62,434	7,449	4,207
75	1403,797	1,540	62,432	7,449	4,207
76	1404,636	1,457	62,429	7,449	4,207
77	1409,888	1,547	62,427	7,449	4,207
78	1422,995	3,661	62,425	7,449	4,206
79	1443,242	3,005	62,423	7,449	4,206
80	1475,123	1,369	62,421	7,449	4,206
81	1478,580	1,369	62,419	7,448	4,206
82	1481,516	1,393	62,417	7,448	4,206
83	1482,596	1,354	62,415	7,448	4,205
84	1488,472	1,498	62,413	7,448	4,205
85	1489,359	1,489	62,411	7,448	4,205
86	1498,141	1,651	62,410	7,448	4,205
87	1502,857	1,911	62,408	7,448	4,205
88	1582,300	5,658	62,406	7,448	4,205
89	1584,603	5,818	62,405	7,448	4,204
90	1614,743	1,859	62,403	7,448	4,204
91	1629,394	1,849	62,401	7,447	4,204
92	1635,011	2,718	62,400	7,447	4,204
93	1643,226	2,936	62,399	7,447	4,204
94	1660,985	6,895	62,397	7,447	4,204
95	1671,896	1,871	62,396	7,447	4,204
96	3059,545	5,728	62,394	7,447	4,203
97	3059,665	5,722	62,393	7,447	4,203
98	3062,273	5,730	62,392	7,447	4,203
99	3063,730	5,735	62,390	7,447	4,203
100	3129,806	6,348	62,389	7,447	4,203
101	3130,971	6,344	62,388	7,447	4,203
102	3134,095	6,366	62,387	7,447	4,203
103	3136,145	6,370	62,386	7,446	4,203
104	3168,124	6,523	62,384	7,446	4,203
105	3168,767	6,528	62,383	7,446	4,202
106	3172,114	6,546	62,382	7,446	4,202
107	3173,080	6,545	62,381	7,446	4,202
108	3239,449	6,746	62,380	7,446	4,202
109	3243,105	6,762	62,379	7,446	4,202
110	3736,770	8,684	62,378	7,446	4,202

111 112	3783,344 3867,448	8,847 9,208	62,377 62,376	7,446 7,446	4,202 4,202
113	3872,857	9,233	62,375	7,446	4,202
114	3882,518	9,569	62,374	7,446	4,201
115	3949,977	9,864	62,373	7,446	4,201
116	3976,108	10,094	62,372	7,446	4,201
117	3981,937	10,127	62,371	7,446	4,201

Tabela 5. Valores teóricos da frequência (v) em cm⁻¹, constante de força (k) em N/m, temperatura = 300K, $\alpha' = 1,5$ para os O da H₂O, $\alpha' = 2,6$ para os O do ACAC e os parâmetros de intensidade $\Omega_{\lambda,}$ ($\lambda=2, 4 \text{ e } 6, \text{ em } 10^{-20} \text{ cm}^2$), referente ao complexo [Eu(ACAC)₃(H₂O)₂] para cada modo normal de vibração.

Modos Normais	v	k	Ω_2	Ω_4	Ω_6
G. de equilíbrio	-	-	67,6539	11,614	2,4736
1	24,601	0,0004	67,610	11,629	2,484
2	25,755	0,002	68,051	11,579	2,506
3	29,788	0,002	68,115	11,624	2,506
4	35,228	0,003	68,059	11,601	2,502
5	42,331	0,004	68,029	11,603	2,499
6	44,308	0,005	68,103	11,619	2,495
7	47,535	0,005	68,038	11,619	2,493
8	50,997	0,007	68,110	11,613	2,501
9	78,322	0,013	68,143	11,617	2,500
10	89,555	0,007	68,104	11,617	2,498
11	95,255	0,025	68,105	11,616	2,497
12	98,525	0,021	68,077	11,615	2,496
13	108,337	0,012	68,053	11,615	2,494
14	113,989	0,015	68,034	11,615	2,492
15	122,736	0,011	68,011	11,615	2,491
16	127,955	0,014	67,991	11,615	2,490
17	132,651	0,047	67,975	11,617	2,489
18	138,042	0,036	67,964	11,618	2,489
19	140,274	0,027	67,934	11,618	2,488
20	146,405	0,032	67,926	11,618	2,488
21	157,011	0,072	67,920	11,618	2,488
22	160,832	0,040	67,910	11,618	2,487
23	165,910	0,037	67,899	11,618	2,487
24	171,090	0,030	67,888	11,618	2,486
25	174,237	0,079	67,896	11,620	2,486
26	184,121	0,109	67,886	11,621	2,487
27	186,076	0,114	67,888	11,620	2,487
28	199,232	0,132	67,882	11,620	2,486

29	208,851	0,180	67,878	11,620	2,486
30	214,383	0,188	67,873	11,620	2,486
31	216,802	0,266	67,869	11,620	2,486
32	225,813	0,145	67,864	11,620	2,485
33	230,057	0,159	67,859	11,620	2,485
34	238,876	0,192	67,857	11,620	2,485
35	242,913	0,136	67,852	11,620	2,485
36	244,713	0,256	67,847	11,621	2,485
37	310,764	0,062	67,842	11,621	2,485
38	393,396	0,402	67,835	11,621	2,484
39	397,926	0,431	67,830	11,620	2,484
40	410,494	0,462	67,826	11,620	2,484
41	411,753	0,458	67,826	11,620	2,484
42	413,957	0,499	67,822	11,620	2,483
43	420,614	0,380	67,817	11,620	2,483
44	438,787	0,144	67,814	11,620	2,483
45	502,128	0,163	67,810	11,620	2,483
46	529,786	0,402	67,808	11,620	2,483
47	533,066	0,316	67,805	11,620	2,483
48	534,446	0,358	67,802	11,620	2,482
49	535,080	0,594	67,799	11,620	2,482
50	579,201	0,540	67,796	11,620	2,482
51	581,861	0,541	67,794	11,619	2,482
52	582,458	0,542	67,791	11,619	2,482
53	609,588	0,240	67,788	11,619	2,482
54	654,617	0,897	67,786	11,619	2,481
55	656,756	0,964	67,784	11,619	2,481
56	660,265	0,969	67,781	11,619	2,481
57	679,740	0,717	67,779	11,619	2,481
58	681,593	0,729	67,777	11,619	2,481
59	682,982	0,748	67,775	11,619	2,481
60	707,477	0,326	67,773	11,619	2,481
61	785,438	0,411	67,771	11,619	2,481
62	787,118	0,414	67,769	11,619	2,481
63	800,768	0,426	67,767	11,619	2,480
64	951,160	2,395	67,765	11,618	2,480
65	954,057	2,412	67,763	11,618	2,480
66	954,791	2,390	67,762	11,618	2,480
67	962,750	1,428	67,760	11,618	2,480
68	964,602	1,439	67,758	11,618	2,480
69	967,666	1,484	67,758	11,618	2,480
70	1032,861	0,937	67,756	11,618	2,480
71	1033,874	0,936	67,755	11,618	2,480
72	1037,591	0,955	67,753	11,618	2,480

73	1045,274	1,275	67,752	11,618	2,479
74	1045,926	1,291	67,751	11,618	2,479
75	1047,470	1,293	67,750	11,618	2,479
76	1049,855	1,293	67,748	11,618	2,479
77	1050,317	1,317	67,747	11,618	2,479
78	1051,243	1,344	67,746	11,618	2,479
79	1059,796	1,174	67,745	11,618	2,479
80	1062,274	1,165	67,744	11,618	2,479
81	1062,408	1,169	67,743	11,618	2,479
82	1229,441	1,205	67,741	11,618	2,479
83	1231,543	1,210	67,740	11,618	2,479
84	1236,158	1,228	67,739	11,618	2,479
85	1296,455	3,818	67,738	11,617	2,479
86	1300,129	3,734	67,737	11,617	2,479
87	1302,047	3,609	67,736	11,617	2,479
88	1393,429	1,440	67,735	11,617	2,478
89	1395,103	1,450	67,734	11,617	2,478
90	1398,104	1,439	67,734	11,617	2,478
91	1400,309	1,570	67,733	11,617	2,478
92	1402,260	1,542	67,732	11,617	2,478
93	1402,874	1,556	67,731	11,617	2,478
94	1446,244	2,771	67,730	11,617	2,478
95	1448,952	2,784	67,729	11,617	2,478
96	1464,504	1,718	67,728	11,617	2,478
97	1472,351	1,337	67,728	11,617	2,478
98	1476,470	1,348	67,727	11,617	2,478
99	1477,390	1,405	67,726	11,617	2,478
100	1478,737	1,368	67,726	11,617	2,478
101	1479,054	1,357	67,725	11,617	2,478
102	1482,081	1,355	67,724	11,617	2,478
103	1486,131	1,480	67,723	11,617	2,478
104	1487,549	1,502	67,723	11,617	2,478
105	1490,584	1,447	67,722	11,617	2,478
106	1507,472	2,090	67,722	11,617	2,478
107	1509,592	2,101	67,721	11,617	2,478
108	1527,175	3,744	67,720	11,617	2,478
109	1571,091	5,602	67,720	11,617	2,478
110	1571,718	5,619	67,719	11,617	2,478
111	1572,487	5,671	67,719	11,617	2,477
112	1609,029	1,709	67,718	11,617	2,477
113	1628,088	1,750	67,717	11,617	2,477
114	1659,053	12,699	67,717	11,617	2,477
115	1668,345	13,281	67,717	11,617	2,477
116	1691,694	15,923	67,716	11,616	2,477

117	3054,137	5,693	67,715	11,616	2,477
118	3055,500	5,698	67,715	11,616	2,477
119	3056,665	5,704	67,714	11,616	2,477
120	3059,633	5,713	67,714	11,616	2,477
121	3059,772	5,713	67,713	11,616	2,477
122	3061,910	5,720	67,713	11,616	2,477
123	3127,449	6,339	67,712	11,616	2,477
124	3129,655	6,346	67,712	11,616	2,477
125	3129,683	6,347	67,711	11,616	2,477
126	3133,358	6,363	67,711	11,616	2,477
127	3134,244	6,367	67,710	11,616	2,477
128	3137,199	6,377	67,710	11,616	2,477
129	3156,343	6,479	67,710	11,616	2,477
130	3156,619	6,480	67,709	11,616	2,477
131	3156,796	6,483	67,709	11,616	2,477
132	3157,915	6,488	67,708	11,616	2,477
133	3158,129	6,487	67,708	11,616	2,477
134	3158,433	6,492	67,708	11,616	2,477
135	3220,595	6,663	67,707	11,616	2,477
136	3224,750	6,681	67,707	11,616	2,477
137	3224,882	6,681	67,706	11,616	2,477
138	3729,280	8,621	67,706	11,616	2,477
139	3817,233	8,966	67,706	11,616	2,477
140	3869,947	9,508	67,705	11,616	2,477
141	3918,104	9,801	67,705	11,616	2,477

Tabela 6. Valores teóricos da frequência (v) em cm⁻¹, constante de força (k) em N/m, temperatura = 300K, $\alpha' = 2,6$ para os O do ACAC e os parâmetros de intensidade Ω_{λ_c} (λ =2, 4 e 6, em 10⁻²⁰ cm²), referente ao complexo [Eu(ACAC)₄]⁻ para cada modo normal de vibração.

Modos Normais	v	k	Ω_2	Ω_4	Ω_6
G. de equilíbrio	-	-	20,8017	12,8866	2,6785
1	18,740	0,0009	22,225	12,854	2,715
2	21,565	0,0011	22,014	12,915	2,730
3	27,662	0,0016	21,746	12,900	2,716
4	31,491	0,0028	21,653	12,921	2,722
5	41,607	0,0042	21,581	12,929	2,719
6	45,108	0,0042	21,463	12,919	2,714
7	47,000	0,0047	21,404	12,917	2,711
8	53,467	0,0079	21,413	12,925	2,708
9	68,415	0,0101	21,345	12,915	2,705
10	69,360	0,0031	21,294	12,912	2,703
11	82,651	0,0169	21,256	12,907	2,703
12	97,407	0,0068	21,221	12,906	2,701

13	101,651	0,0256	21,187	12,903	2,699
14	104,965	0,0191	21,171	12,901	2,698
15	111,076	0,0083	21,147	12,900	2,696
16	114,963	0,0109	21,125	12,899	2,696
17	118,103	0,0319	21,105	12,898	2,695
18	122,415	0,0388	21,088	12,897	2,694
19	129,533	0,0127	21,071	12,897	2,693
20	130,633	0,0310	21,059	12,896	2,692
21	137,040	0,0620	21,055	12,896	2,692
22	143,560	0,0576	21,049	12,896	2,692
23	146,341	0,0519	21,043	12,896	2,691
24	151,996	0,0436	21,034	12,895	2,690
25	156,719	0,0494	21,030	12,895	2,690
26	161,862	0,0578	21,021	12,894	2,690
27	164,356	0,0551	21,016	12,894	2,689
28	168,745	0,0497	21,009	12,893	2,689
29	175,339	0,0361	21,004	12,893	2,688
30	176,256	0,0723	20,999	12,893	2,688
31	177,653	0,0408	20,998	12,893	2,688
32	192,738	0,0325	20,990	12,893	2,687
33	200,678	0,1854	20,989	12,892	2,687
34	203,488	0,1112	20,984	12,892	2,687
35	212,063	0,2362	20,982	12,892	2,687
36	216,452	0,2261	20,976	12,891	2,687
37	227,993	0,1333	20,972	12,891	2,687
38	232,270	0,1475	20,969	12,891	2,686
39	236,020	0,1260	20,970	12,891	2,686
40	264,467	0,0494	20,966	12,891	2,686
41	308,137	0,2162	20,963	12,891	2,686
42	335,134	0,2515	20,963	12,891	2,686
43	385,003	0,3786	20,959	12,891	2,686
44	388,839	0,3912	20,956	12,891	2,686
45	392,087	0,2808	20,952	12,891	2,685
46	401,571	0,3279	20,950	12,891	2,685
47	408,711	0,4620	20,948	12,891	2,685
48	412,877	0,4928	20,945	12,891	2,685
49	413,632	0,4893	20,942	12,890	2,685
50	469,582	0,3664	20,940	12,890	2,685
51	510,161	0,4772	20,938	12,890	2,685
52	526,476	0,5904	20,936	12,890	2,685
53	528,608	0,5844	20,934	12,890	2,684
54	529,974	0,5851	20,932	12,890	2,684
55	538,011	0,4631	20,930	12,890	2,684
56	577,144	0,5361	20,928	12,890	2,684

57	580,460	0,5535	20,926	12,890	2,684
58	583,401	0,5547	20,924	12,890	2,684
59	649,435	0,9161	20,923	12,890	2,684
60	650,001	0,9220	20,921	12,890	2,684
61	652,197	0,9429	20,919	12,890	2,684
62	675,907	0,6589	20,918	12,890	2,684
63	676,793	0,7493	20,916	12,890	2,684
64	678,386	0,7640	20,914	12,889	2,683
65	681,507	0,7778	20,912	12,890	2,683
66	737,622	0,3607	20,911	12,890	2,683
67	741,807	0,3656	20,909	12,889	2,683
68	755,767	0,3776	20,908	12,890	2,683
69	782,209	1,0876	20,906	12,889	2,683
70	829,102	0,9487	20,905	12,889	2,683
71	886,729	0,8745	20,903	12,889	2,683
72	933,957	2,1957	20,901	12,889	2,683
73	937,039	2,2659	20,900	12,889	2,683
74	937,783	2,2507	20,899	12,889	2,683
75	947,805	0,8718	20,897	12,889	2,683
76	958,704	1,3019	20,896	12,889	2,683
77	959,976	1,3590	20,895	12,889	2,683
78	961,058	1,3254	20,894	12,889	2,683
79	1002,698	0,8270	20,892	12,889	2,683
80	1018,484	1,1895	20,891	12,889	2,683
81	1024,940	0,9308	20,890	12,889	2,682
82	1027,961	0,9327	20,889	12,889	2,682
83	1030,891	0,9916	20,888	12,889	2,682
84	1036,126	1,4878	20,887	12,889	2,682
85	1040,056	1,4994	20,886	12,889	2,682
86	1041,082	1,3169	20,885	12,889	2,682
87	1043,620	1,1820	20,884	12,889	2,682
88	1045,154	1,2435	20,883	12,889	2,682
89	1046,003	1,1928	20,882	12,889	2,682
90	1056,593	1,1431	20,881	12,889	2,682
91	1057,388	1,1372	20,881	12,889	2,682
92	1060,333	1,1483	20,880	12,889	2,682
93	1081,461	1,2115	20,879	12,889	2,682
94	1125,008	1,6555	20,878	12,889	2,682
95	1175,054	1,4268	20,877	12,889	2,682
96	1214,965	2,0486	20,876	12,889	2,682
97	1219,630	1,1791	20,875	12,889	2,682
98	1221,914	1,1841	20,874	12,889	2,682
99	1228,326	1,2063	20,874	12,889	2,682
100	1241,254	1,5144	20,873	12,889	2,682

101	1282,215	3,6467	20,872	12,889	2,682
102	1283,120	3,7585	20,871	12,889	2,682
103	1285,822	3,7149	20,871	12,889	2,682
104	1303,208	1,5979	20,870	12,888	2,682
105	1365,636	1,4126	20,869	12,888	2,682
106	1370,922	1,4238	20,869	12,888	2,682
107	1381,095	1,4153	20,868	12,888	2,682
108	1383,355	1,4360	20,868	12,888	2,682
109	1384,479	1,4381	20,867	12,888	2,681
110	1386,034	1,5652	20,866	12,888	2,681
111	1389,919	1,5544	20,866	12,888	2,681
112	1390,388	1,5596	20,865	12,888	2,681
113	1390,545	1,5476	20,865	12,888	2,681
114	1393,137	1,7828	20,864	12,888	2,681
115	1463,074	1,7808	20,864	12,888	2,681
116	1467,117	1,5419	20,863	12,888	2,681
117	1468,366	1,5348	20,862	12,888	2,681
118	1472,666	1,3782	20,862	12,888	2,681
119	1473,936	1,4011	20,861	12,888	2,681
120	1474,813	1,3496	20,861	12,888	2,681
121	1475,635	1,3458	20,860	12,888	2,681
122	1475,900	1,4136	20,860	12,888	2,681
123	1476,943	1,3641	20,860	12,888	2,681
124	1477,509	1,3475	20,859	12,888	2,681
125	1479,624	1,4354	20,859	12,888	2,681
126	1481,949	1,3602	20,858	12,888	2,681
127	1484,198	1,3729	20,858	12,888	2,681
128	1485,006	1,4237	20,857	12,888	2,681
129	1485,969	1,4320	20,857	12,888	2,681
130	1488,760	1,4360	20,856	12,888	2,681
131	1503,868	1,3997	20,856	12,888	2,681
132	1523,264	3,3156	20,856	12,888	2,681
133	1533,521	4,1455	20,855	12,888	2,681
134	1552,198	5,8099	20,855	12,888	2,681
135	1567,565	6,1636	20,854	12,888	2,681
136	1571,619	6,1534	20,854	12,888	2,681
137	1581,537	7,8237	20,854	12,888	2,681
138	1690,217	16,0433	20,853	12,888	2,681
139	1697,784	16,7348	20,853	12,888	2,681
140	1720,436	17,8011	20,853	12,888	2,681
141	1797,916	19,2489	20,852	12,888	2,681
142	2869,612	5,2467	20,852	12,888	2,681
143	3012,270	5,5609	20,852	12,888	2,681
144	3038,749	5,6293	20,851	12,888	2,681

145	3044,080	5,6623	20,851	12,888	2,681
146	3047,445	5,6622	20,851	12,888	2,681
147	3047,550	5,6597	20,850	12,888	2,681
148	3048,228	5,6638	20,850	12,888	2,681
149	3048,371	5,6619	20,850	12,888	2,681
150	3048,912	5,6673	20,849	12,888	2,681
151	3054,810	5,8337	20,849	12,888	2,681
152	3092,057	6,1790	20,849	12,888	2,681
153	3114,727	6,2829	20,848	12,888	2,681
154	3117,481	6,3020	20,848	12,888	2,681
155	3119,718	6,3100	20,848	12,888	2,681
156	3121,486	6,3173	20,847	12,888	2,681
157	3125,402	6,3340	20,847	12,888	2,681
158	3126,138	6,3364	20,847	12,888	2,681
159	3126,588	6,3417	20,847	12,888	2,681
160	3127,944	6,3438	20,846	12,888	2,681
161	3130,902	6,3499	20,846	12,888	2,681
162	3132,148	6,3802	20,846	12,888	2,681
163	3136,239	6,3970	20,845	12,888	2,681
164	3136,622	6,3999	20,845	12,888	2,681
165	3137,824	6,3997	20,845	12,888	2,681
166	3139,136	6,4087	20,845	12,888	2,680
167	3140,250	6,4124	20,844	12,888	2,680
168	3163,686	6,5091	20,844	12,888	2,680
169	3199,587	6,5719	20,844	12,888	2,680
170	3200,362	6,5754	20,844	12,888	2,680
171	3208,932	6,6110	20,843	12,888	2,680

As tabelas 3,4,5 e 6 resumem os resultados da inserção gradativa do ligante ACAC, para a ligação dos átomos de O com o íon de Eu³⁺. Diferente da estrutura só contendo moléculas de H₂O essas não apresentam centro de inversão, logo sua estrutura de equilíbrio tem parâmetros de intensidade não nulo. A Figura 12 ilustra os vetores deslocamento de um dos modos vibracionais dos complexos, posicionando assim as direções de movimentações discretas (dr). Na figura 13, está separado somente o ligante bidentado ACAC, com os orbitais moleculares localizados da área de ligação, relevante para a obtenção da polarizabilidade efetiva do ligante (α ' = 2,6).

Figura 12. Vetores deslocamentos dos complexos de um modo normal de vibração, necessário para direcionar os deslocamentos discretos (dr), $[Eu(H_2O)_8]^{3+}$, $[Eu(ACAC)(H_2O)_6]^{2+}$, $[Eu(ACAC)_2(H_2O)_4]^+$, $[Eu(ACAC)_3(H_2O)_2]$, $[Eu(ACAC)_4]^-$.

Figura 13. LMO (do inglês, localized molecular orbital) do ligante bidentado ACAC, região de ligação com o íon Eu³⁺.

Nas tabelas 3, 4, 5 e 6, que representa as variações dos parâmetros de intensidade dos complexos, $[Eu(ACAC)(H_2O)_6]^{2+}$, $[Eu(ACAC)_2(H_2O)_4]^+$, $[Eu(ACAC)_3(H_2O)_2]$, $[Eu(ACAC)_4]^-$ temos que as maiores variações de Ω_{λ} estão localizadas entre as frequências 32,125cm⁻¹ - 110,117cm⁻¹, 19,992cm⁻¹ - 131,785 cm⁻¹, 24,601 cm⁻¹ - 89,555cm⁻¹ e 18,740 cm⁻¹ - 69,360 cm⁻¹, respectivamente. Esses valores de frequência estão localizado entre os primeiros modos vibracionais da molécula, constatando que as variações sistemáticas da primeira esfera de

coordenação está localizada nos menores valores de frequência. Os modos de vibração entre 1 a 10, são os de menores frequência e que apresentam as seguintes variações do modulo da distância entre o átomo de O e íon de Eu³⁺, esses valores são expressos nas figuras abaixo.

Figura 14. Representação das distância de deslocamentos de cada átomo ligante ao íon Eu³⁺, para os 10 primeiros modos vibracionais, variando da frequência 32,125cm⁻¹ - 110,117cm⁻¹, referente a tabela 3.

Cada movimento realizado através dos modos vibração causam mudanças diretamente nos vetores de deslocamento dos átomos. Como indicado na Figura 14, tem-se os módulos entre O---Eu³⁺, onde pode-se notar que as maiores variações estão nos O₁₀, O₁₆, O₂₈ e O₃₁, os quais são átomos da molécula de H₂O, indicando assim que essa variações do Ω_2 , que são sensíveis a essa variação estrutural, podendo estar ligado em sua maior parcela a essas mudanças de estiramento da molécula H₂O.

Na figura 15, podemos indicar que o módulo de deslocamento entre O---Eu³⁺, estão localizados nos átomos de O de três moléculas de H₂O, O₁₃, O₁₆ e O₁₉ e um dos átomos de O da molécula ACAC, O₁₁, indicando que a variação do Ω_2 , estão localizadas em sua maior parcela nesses ligantes.

Figura 16. Representação das variações de distância, entre as ligações O---Eu³⁺, para os primeiros modos vibracionais, variando da frequência 24,601 cm⁻¹ - 89,555cm⁻¹, referente a tabela 5.

Na figura 16, temos que os módulos de deslocamentos entre O---Eu³⁺, estão localizados entre as moléculas de H₂O, nos átomos O₁₃ e O₁₆ e em dois átomos de O de duas moléculas ACAC, O₆ e O₄₈, mostrando que a mudança do Ω_2 são principalmente por esses ligantes.

A figura 17, representa os módulos dos vetores de deslocamentos entre O---Eu³⁺, que estão localizados nas O₅, O₆, O₁₂ e O₅₁, mostrando que a mudança do Ω_2 são principalmente por esses ligantes.

Figura 17. Representação das variações de distância, entre as ligações O---Eu³⁺, para os primeiros modos vibracionais, variando da frequência 18,740 cm⁻¹ - 69,360 cm⁻¹, referente a tabela 6.

6. CONCLUSÕES

A inclusão do algoritmo cubo variacional no JOYSpectra possibilitou um ganho para o programa no estudo de compostos com íons lantanídeos. Uma nova perspectiva de como entender sistemas que apresentam ou não centro de inversão é apresentada. O tratamento teórico realizado baseou-se na utilização de uma população térmica para criar distorções espaciais discretas de (±L), para cada coordenada da geometria de equilíbrio. A mudança de temperatura (77 K à 300 K) provocou uma maior liberdade de vibração que possibilitou maiores distorções espaciais, aumentando os valores de Ω_{λ} , sendo que os maiores resultados foram observados para Ω_2 , devido a sua sensibilidade às mudancas da geometria equilíbrio do composto EuCl₆. Através análise da temperatura em função do comprimento L, foi possível entender o comportamento da população térmica, onde a partir de valores de temperatura de 100 K, a função tende a se comporta como uma população de Boltzmann. Foi possível entender o comportamento dos $\overline{\Omega}_{\lambda}$ em função da temperatura, ajudando assim tanto no entendimento teórico quanto experimental. Contudo esse algoritmo não carregava a informação do peso populacional para modificação estrutural da geometria do complexo, assim o modelo dos modos normais de vibração, incluiu esse peso populacional (p_i), além de trata cada movimento do complexo de acordo com vetores deslocamentos de cada movimento vibracional, onde podese notar que também é possível analisar os parâmetros de intensidade para cada grau de liberdade da molécula, como foi visto nas tabela 2 a 6. Com essa análise também é possível verificar como os efeitos térmicos em conjunto com os modos, podem influenciar diretamente nos Ω_{λ} , sendo que nessas tabelas só estão presentes dados com temperatura de 300 K. Além disso foi possível entender como os módulos da distância dos átomos coordenados os íon Eu³⁺, estava sendo modificado para os modos vibracionais que mais influência nos Ω_2 . Por fim analisando entre os dois modelos posso assim dizer que a metodologia que utiliza os modos normais apresenta mais promissora, pode carregar maiores informações para realizar as mudanças estruturais, podendo ser utilizada mais a fundo para compreender outras propriedades espectroscópicas.

REFERÊNCIAS

AUZEL, F, DE SÁ, G.F, DE AZEVEDO, W.M, An example of concentration sensitive electron-phonon coupling in $\{(C4H9)4N\}3$ EuxY1–x(NCS)6 and a new hypothesis for self-quenching, **J. Lumin**. 21 (1980) 187–192.

CAMARGO, A.S.S. Caracterização espectroscópica de possíveis meios ativos para lasers de Nd³⁺ e Tm³⁺ Dissertação de mestrado, Universidade Federal de São Carlos, **2003**.

CARNEIRO NETO, A.N, MOURA Jr, R.T, MALTA, O.L, On the mechanisms of non-radiative energy transfer between lanthanide ion: centrosymmetric systems, **J. Lumin**. 210 (2019), 342-347.

CARNEIRO NETO, A.N, TEOTONIO, E.E.S, DE SÁ, G.F, BRITO, H.F, LEGENDZIEWICZ, J. CARLOS, L.D, FELINTO, M.C.F.C, GAWRYSZEWSKA, P. MOURA, R.T, LONGO, R.L, FAUSTINO, W.M. MALTA, O.L. Modeling intramolecular energy transfer in lanthanide chelates: A critical review and recent advances, in: Handb. **Phys. Chem. Rare Earths**, Elsevier B.V., 2019, p. 55–162.

CARUSO, F. OGURI. V. SILVEIRA, F. Calores específicos dos gases ideias degenerados. **Revista brasileira de ensino de física**, vol. 40, 2, 2018.

CROSBY, G.A, WHAN, R.E, ALIRE, R.M, Intramolecular energy transfer in rare earth Chelates. Role of the triplet state. **The Journal of Chemical Physics.** Vol 34, n 3, 1961.

D. ANANIAS, F.A. ALMEIDA PAZ, L.D. CARLOS, J. ROCHA, Near-infrared ratiometric luminescente thermometer based on a new lanthanide silicate, **Chem. A Eur. J.** 24 (2018) 11926–11935

DE SÁ, G.F, MALTA, O.L, DE MELLO DONEGÁ, C, SIMAS, A.M, LONGO, R.L, SANTA-CRUZ, P.A, DA SILVA, E.F, Spectroscopic properties and design of highly luminescent lanthanide coordination complexes, **Coord. Chem. Rev.** 196 (2000) 165–195.

FAUSTINO, W.M, NUNES, L.A, TERRA, I.A.A, FELINTO, M.C.F.C, BRITO, H.F, MALTA, O.L, Measurement and model calculation of the temperature dependence of ligand-tometal energy transfer rates in lanthanide complexes, **J. Lumin.** 137 (2013) 269–273.

FORSTER, T, Energiewanderung und Fluoreszenz, Naturwissenschaften 33 (1946) 166–175.

GRZYB, T. SZCZESZAK, A. SHYICHUK, A. MOURA Jr, R.T, CARNEIRO NETO, A.N. ANDRZEJEWSKA, MALTA, O.L, LIS, S. Comparative studies of structure, spectroscopic properties and intensity parameters of tetragonal rare earth vanadate nanophosphors doped with Eu(III), **J. Alloys Compd**. (2018).

SHYICHUK, A. MOURA Jr, R.T, CARNEIRO NETO, A.N, RUNOWSKI, M. ZARAD, M.S. SZCZESZAK, A. MALTA, O.L. Effects of dopant addition on lattice and luminescence intensity parameters of Eu(III)-doped lanthanum orthovanadate, **J. Phys. Chem.** C. (2016).

Gaussian 98, Revision A.6, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C.

Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M.W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head Gordon, E. S. Replogle, e J. A. Pople, Gaussian, Inc., Pittsburgh PA, (1998).

HASE, Y. NCT: Pacote de tratamento de coordenadas normais (versão 7). **Química Nova.** Vol 27, n 4, p 664-667, 2004.

JOYSpectra - Program for lanthanides luminescence calculations. Version 2019. Disponível em http://www.cca.ufpb.br/gpqtc/joyspectra.

JUDD, B.R, Optical absorption intensities of rare-earth ions, Phys. Rev. 127 (1962) 750-761.

KOHANOFF, J. Electronic Structure Methods, Universidade de Cambridge, 2006.

LARKIN, P. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation. 1. ed. Waltham: Elsevier, 2011.

LEAL, R.C, NETO, J.M.M, LIMA, F.C.A, FEITOSA, C.M, A química quântica na compreensão de teorias de química orgânica. **Quím. Nova**, v. 33, n. 2, p. 1211-1215, 2010

LEE, C. YANG, W. PARR, R.G. Development of the Colled-Salvetti correlation-energy formula into a functional of the eléctron density. **Physical Review B.** v. 37, n. 2, 1988

LEWARS, E. G. Semiempirical Calculations. In: Computational Chemistry. Springer, Dordrecht, 2011.

LIMA, G.B.V. BUENO, J.C. SILVA, A.F. CARNEIRO NETO, A.N. MOURA Jr. R.T. TEOTONIO, E.E.S. MALTA, O.L. FAUSTINO, W.M. J. Lumin (2019) doi.org/10.1016/j.jlumin.2019.116884.

MALTA, O.L, A simple overlap model in lanthanide crystal-field theory, **Chem. Phys. Lett**. 87 (1982) 27–29.

MALTA, O.L, BATISTA, H,J, CARLOS, L,D. Overlap polarizability of a chemical bond: a scale of covalency and application to lanthanide compounds. **Chem, Phys**,282, (2002), 21-30

MALTA, O.L, Theoretical crystal-field parameters for the YOCI:Eu3+ system. A simple overlap model, **Chem. Phys. Lett.** 88 (1982) 353–356.

MALTA, O.L; CARLOS, L.D. Intensities of 4f-4f transition in glass materials. **Química Nova**, 26, 889-895,2003.

METROPOLIS, N. ULAM, S. The Monte Carlo Method, J. Am. Stat. Assoc, 44, 1949, 335-341.

MORGON, N.H., COUTINHO. K., **Métodos de química teórica e modelagem molecular**. 1° ed. São Paulo: Editora Livraria da Física, 2007.

MOURA Jr, R.T, CARNEIRO NETO, A.N, LONGO, R.L, MALTA, O.L, On the calculation and interpretation of covalency in the intensity parameters of 4f–4f transitions in Eu³⁺ complexes based on the chemical bond overlap polarizability, **J. Lumin**. 170 (2016) 420–430.

Manual Mopac, 2007.

OFELT, G.S. Intensities of crystal spectra of rare-earth ions, J. Chem. Phys. 37 (1962) 511–520.

OVSYAKIN, V.V, FEOFILOV, P.P, Cooperative sensitization of luminescence in crystals activated with rare earth ions, Sov. Phys. **JETP Lett**. 4 (1966) 317.

PEACOCK, R.D. The intensities of Lanthanide f-f Transitions. University of London.1974.

PEDROZA, A.C. Teoria do Funcional da Densidade uma possível solução para o problema de muitos elétrons da mecânica quântica. **Physicae Organum**. v 2, n.1, 2016.

PERDEW, J. P. BURKE, K. ERNZERHOF, M. Generalized Gradient Approximation Made Simple. v. 77, n.18, 1996.

SHYICHUK, A. MOURA Jr, R.T, CARNEIRO NETO, A.N, RUNOWSKI, M. ZARAD, M.S, SZCZESZAK, A., Lis, S, MALTA, O.L. Effects of Dopant Addition on Lattice and Luminescence Intensity Parameters of Eu(III)-Doped Lanthanum Orthovanadate. J. Chem, Phys C, 120, (2016), 28497-28508.

SANT'ANA, C. M.R, Métodos de modelagem molecular para estudos e planejamento de compostos bioativos: uma introdução. **Rev. virtual química,** v. 1, p. 49-57, 2009.

SHRIVER, D. F.; ATKINS, P. W., Química Inorgânica. 4ª Ed. Bookman: Porto Alegre, 2003.

TE VELDE, G, BICKELHAUPT, F.M, BAERENDS E.J, FONSECA GUERRA, C, VAN GISBERGEN, S.J.A, SNIJDERS, J.G, ZIEGLER, T, Chemistry with ADF, **J. Comput. Chem**. 22 (2001) 931–967.

WILSON, E. B, Jr, J.C, DECIUS, P.C, CROSS, Molecular vibrations: the theory of infrared e Raman vibrational spectra, McGraw-Hill, New York, 1980.

ZHENG, W, HUANG, P, TU, D, MA, E, ZHU, H, CHEN, X, Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection, **Chem. Soc. Rev**. 44 (2015) 1379–1415.