

UNIVERSIDADE ESTADUAL DA PARAÍBA Programa de Pós-Graduação em Matemática Mestrado Profissional - PROFMAT/CCT/UEPB

Séries Geométricas no Ensino Fundamental

Sérgio da Silva Minzé

Trabalho de Conclusão de Curso

Orientador: Profo. Dr. Manuel Antolino Milla Miranda

Campina Grande - PB Maio/2015

UNIVERSIDADE ESTADUAL DA PARAÍBA Programa de Pós-Graduação em Matemática Mestrado Profissional - PROFMAT/CCT/UEPB

Séries Geométricas no Ensino Fundamental

por

Sérgio da Silva Minzé †

Trabalho Conclusão de Curso apresentado ao Corpo Docente do Programa de Pós-Graduação em Matemática - CCT - UEPB, na modalidade Mestrado Profissional, como requisito parcial para obtenção do título de Mestre.

[†]Bolsista CAPES

É expressamente proibida a comercialização deste documento, tanto na forma impressa como eletrônica. Sua reprodução total ou parcial é permitida exclusivamente para fins acadêmicos e científicos, desde que na reprodução figure a identificação do autor, título, instituição e ano da dissertação.

M663s Minzé, Sérgio da Silva.

Séries geométricas no Ensino Fundamental [manuscrito] / Sérgio da Silva Minzé. - 2015.

46 p. : il. color.

Digitado.

Trabalho de Conclusão de Curso (Mestrado Profissional em Matemática em Rede Nacional) - Universidade Estadual da Paraíba, Centro de Ciências e Tecnologia, 2015.

"Orientação: Prof. Dr. Manuel Antolino Milla Miranda, Departamento de Matemática".

1. Série geométrica. 2. Sequência geométrica. 3. Ensino Fundamental. I. Título.

21. ed. CDD 516

Séries Geométricas no Ensino Fundamental

por

Sérgio da Silva Minzé

Trabalho Conclusão de Curso apresentado ao Corpo Docente do Programa de Pós-Graduação em Matemática - CCT - UEPB, na modalidade Mestrado Profissional, como requisito parcial para obtenção do título de Mestre.

Aprovado por:

Antônio Joaquim Rodrigues Feitosa - UFPB

Aldo Trajano Lourêdo - UEPB

Prof^o. Dr. Manuel Antolino Milla Miranda - UEPB

Orientador

Universidade Estadual da Paraíba Centro de Ciências e Tecnologia Curso de Mestrado Profissional em Matemática em Rede Nacional

Maio/2015

Dedicatória

À Deus por todas as coisas, à minha esposa Vanessa Sudário Minzé e ao meu filho Mateus Sudário Minzé, aos meus pais José Paulo Minzé e Maria do Carmo da Silva Minzé, à minha avó Maria Paula de Lima Minzé (in memorian) e ao meu irmão Paulo César da Silva Minzé.

Agradecimentos

Agradeço, primeiramente, à Deus por tudo que tem feito na minha vida.

Ao Professor Doutor Manuel Antolino Milla Miranda, orientador desse trabalho, pelo incentivo nas pesquisas, pelas reuniões realizadas, pelo empenho e toda a formação dada.

À minha amada esposa Vanessa Sudário Minzé, que me deu apoio e me disse várias vezes palavras de ânimo.

Ao meu filho Mateus Sudário Minzé, que algumas vezes queria brincar comigo, mas estava distante e estudando.

Aos meus pais José Paulo Minzé e Maria do Carmo da Silva Minzé, por sempre me incentivarem e me apoiarem nos estudos.

Ao Professor Aldo Trajano Lourêdo que me ajudou, orientou, incentivou com palavras de encorajamento, durante todo o período do curso.

Ao Professor e amigo Jonh Cleidson da Silva pelas palavras de ânimo e pelo tempo de dedicação para me ajudar.

Ao Professor e amigo Rozemar Francisco da Silva que colaborou para o enriquecimento desse trabalho, com seus conhecimentos abrangentes na área e seus conselhos.

À todos os professores do PROFMAT que contribuíram para a ampliação do meu conhecimento.

À todos que estudaram comigo: Alex, Alcione, Fernando, Gilmar, Joab, Loana, Osmar, Ronaldo, Rosival, Raimundo, Rivanildo, Samara, Valdson, Vinícius, entre outros.

Aos meus alunos do nono ano que se dedicaram e participaram da aplicação da proposta.

À gestora Vânia Ralph da Cunha e ao supervisor Eudes Silva Gualberto pelo apoio e pela permissão da aplicação da proposta.

Por fim, agradeço à Sociedade Brasileira da Matemática - SBM pelo oferecimento deste Curso em Rede Nacional e à CAPES pela concessão da bolsa

Resumo

Este trabalho tem como objetivo desenvolver uma sequência didática para que o aluno consiga aprender de forma indutiva a noção de série geométrica convergente. A proposta foi aplicada e desenvolvida em uma turma do 9º ano do ensino fundamental e os resultados obtidos foram muito satisfatórios. O trabalho também contém uma resenha histórica dos conceitos de sequências e séries geométricas.

Palavras Chaves: Série Geométrica, Sequência Geométrica, Ensino Fundamental.

Abstract

This work aims to develop a didatic sequence for the student can learn inductively the notion of convergent geometric series. The proposal was applied and developed in a class of 9th grade of elementary school and the results obtained were very satisfactory. The work also contains a historical review of the concepts of sequences and geometric series.

Keywords: Geometric series, geometric sequences, elementary school.

Lista de Figuras

1	Quadrado de área $2m^2$	3
2	A área I corresponde a $\frac{1}{2}$ da área total	3
3	A soma das áreas I e II corresponde a $1 + \frac{1}{2}$	3
4	A soma das áreas I, II e III corresponde a $1 + \frac{1}{2} + \frac{1}{4}$	4
1.1	Papiro de Rhind	5
1.2	Pitágoras	6
1.3	Paradoxo do corredor	7
1.4	Aquiles e a tartaruga	7
1.5	Carl Friedrich Gauss	10
1.6	Augustin Louis Cauchy	10
2.1	Intervalo aberto de centro ℓ e raio r $\ldots \ldots \ldots \ldots \ldots$	12
4.1	Segmento de reta AB cuja medida é 2 metros	20
4.2	Segmento de reta AB dividido pelo seu ponto médio	20
4.3	Segmento de reta MO corresponde a 1/4 do segmento AB	20
4.4	Segmento de reta OS corresponde a 1/8 do segmento AB	21
5.1	A área III corresponde a $\frac{1}{8}$ da área total	27
6.1	Quadrado de lado 4 cm	36
7.1	Quantidade de alunos que acertaram e erraram cada questão	40
8.1	Questão 05 desenvolvida de forma correta pelo aluno S	41
8.2	Questão 05 respondida de forma correta pelo aluno S	42
8.3	Questão 08 respondida corretamente pelo aluno C	42
8.4	Questão 08 feita de forma errada pelo aluno C	42
8.5	Questão 08 respondida de forma errada pelo aluno S	43
8.6	Ouestão 09 respondida corretamente pelo aluno S	43

8.7	Questão 10 corretamente respondida pelo aluno S	43

Lista de Tabelas

3.1	(S_n) é a sequência das somas parciais ou reduzidas da série	16
4.1	Tabela que indica a soma dos termos da coleção $(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots)$	21
5.1	Somas dos infinitos termos da coleção $(80, 40, 20, 10, 5, \frac{5}{2}, \frac{5}{4}, \frac{5}{8})$	32
7.1	Nota de cada aluno na avaliação	39
7.2	Quantidade de acertos e erros por questão e suas respectivas porcentagens.	40

Lista de Abreviaturas e Siglas

SBM	Sociedade Brasileira de Matemática
CCT	Centro de Ciências e Tecnologia

Lista de Símbolos

\mathbb{N}	
\mathbb{Z}	
Q	
\mathbb{R}	

Sumário

1	Um	pouco de história das sequências e séries	5
2	Seq	uências Numéricas	11
	2.1	Sequências convergentes e divergentes	11
	2.2	Sequências Crescentes e Decrescentes	12
	2.3	Sequências Limitadas e Não limitadas	13
3	Séri	es numéricas	15
	3.1	O Uso do Símbolo do Somatório	15
	3.2	Séries convergentes e divergentes	16
4	Seq	uências e Séries Geométricas	19
	4.1	Definição	19
	4.2	Sequências geométricas de razão entre 0 e 1	20
	4.3	Fórmula do termo geral de uma progressão geométrica	22
	4.4	Soma dos n primeiros termos de uma sequência geométrica	23
	4.5	Soma dos infinitos termos de uma sequência geométrica	25
5	Des	crição das aulas	27
	5.1	Primeira e segunda aulas	27
	5.2	Terceira aula	28
	5.3	Quarta e quinta aulas	28
	5.4	Sexta e sétima aulas	29
	5.5	Oitava e nona aulas	30
	5.6	Décima aula	31
	5.7	Décima primeira e décima segunda aulas	32
6	Apl	icação da Prova	35
	6.1	Avaliação de verificação da aprendizagem	35

7	Resultados da avaliação	39
8	Análise dos resultados	41

Introdução

Vamos considerar inicialmente um quadrado de área 2 m^2 , conforme figura 1.

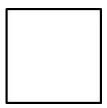


Figura 1: Quadrado de área 2*m*²

Assim, se dividirmos a área desse quadrado pela sua diagonal, qualquer dessas partes corresponderá a $\frac{1}{2} \cdot A = \frac{1}{2} \cdot 2$ $m^2 = 1$ m^2 .

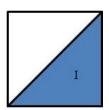


Figura 2: A área I corresponde a $\frac{1}{2}$ da área total

Consideremos agora a área I conforme a figura 2. Dividindo-o em duas partes iguais, obteremos $\frac{1}{4} \cdot A = \frac{1}{4} \cdot 2 \ m^2 = \frac{1}{2} \ m^2$.

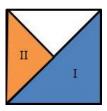


Figura 3: A soma das áreas I e II corresponde a $1 + \frac{1}{2}$

Dividindo na metade a área II obtida anteriormente, teremos $\frac{1}{8} \cdot A = \frac{1}{8} \cdot 2$ $m^2 = \frac{1}{4}$ m^2 que corresponde à área III da figura 4.

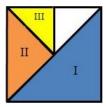


Figura 4: A soma das áreas I, II e III corresponde a $1 + \frac{1}{2} + \frac{1}{4}$

Procedendo, dessa forma, obtemos uma sequência infinita de parcelas de áreas que à medida que somamos, essa soma se aproxima cada vez mais da área total, que é $2m^2$, ou

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 2.$$

Portanto, o objetivo desse trabalho é ajudar ao aluno a compreender e obter de forma rigorosa a soma das parcelas acima. Aplicar-se-á o método a outras situações semelhantes.

No exemplo acima aparecem os conceitos de sequência de números e de soma de números. A seguir faremos um breve relato histórico desses conceitos.

Capítulo 1

Um pouco de história das sequências e séries

Há relatos no papiro de Ahmes (ou Rhind), século XVII a.C., do uso de progressões, no Egito. O papiro de Ahmes é um texto matemático que tem 85 problemas na escrita hierática. Dentre esses problemas, existem alguns relacionados às progressões geométricas e aritméticas.

Figura 1.1: Papiro de Rhind

Os babilônicos também utilizaram progressões, por exemplo, na tábua de Louvre, por volta de 300 a.C. Um problema, sobre progressões, encontrado nessa tábua, relata que:

$$1 + 2 + 2^2 + 2^3 + \dots + 2^8 + 2^9 = 2^9 + 2^9 - 1.$$

Os Pitagóricos notaram que, por meio dos estudos do som, a vibração das cordas

produzia uma frequência que formava uma sequência. Presume-se que é devido à Pitágoras (585 a.C. - 500 a.C.) e aos sábios gregos que viveram posteriormente a ele, a criação da Aritmética. Isto porque eles conheciam as progressões aritméticas, as geométricas, as proporções e os quadrados de uma soma ou de uma diferença.

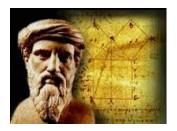


Figura 1.2: Pitágoras

Os matemáticos Euclides de Alexandria (século III a.C.), Diofanto (século III d.C.) e o hindu Aryabhata (499 d.C.) utilizaram regras ligadas às progressões em seus trabalhos. Na obra de Euclides, Os Elementos, livro VIII, encontra-se as proporções contínuas e as progressões geométricas interligadas, de maneira que: se a proporção contínua a:b=b:c=c:d é válida, então a,b,c,d formam uma progressão geométrica.

Por volta de 450 a.C. com os paradoxos de Zenão de Eléia, surgiu pela primeira vez, em que se tem notícia, o aparecimento da ideia de limite. Esses paradoxos envolvem a soma de um número infinito de termos positivos a um número finito, que é a essência da convergência de uma série infinita de números. Observemos dois desses paradoxos.

1. Paradoxo de Zenão

Há aproximadamente 2450 anos, o paradoxo mais antigo de que se tem notícia é o paradoxo de Zenão de Eléia.O problema é proposto por Zenão de acordo com a descrição de Hefez [2]:

Imagine que um atleta deva correr, em linha reta, de um ponto a outro distando 1km. Quando o atleta chegar na metade do caminho, ainda faltará 0,5km para chegar ao seu destino. Quando ele percorrer a metade dessa metade do caminho, ainda faltará 0,25km e quando percorrer a metade dessa distância ainda faltará 0,125km e assim, sucessivamente.

Zenão concluiu que o atleta nunca chegaria ao final desse percurso, que é de 1km,

porque sempre restaria algo a ser percorrido. Esse paradoxo era verdadeiro para a época, pois não era considerado o fator tempo. Além disso, ao somar mais e mais as distâncias percorridas, conforme figura a seguir, o resultado seria limitado por 1 e deste se aproximaria tanto quanto quisesse.

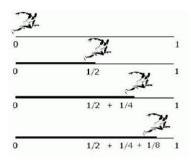


Figura 1.3: Paradoxo do corredor

2. O Paradoxo de Aquiles e a Tartaruga

Zenão considerava a questão relativa do movimento de dois corpos, de acordo com Hefez [3], da seguinte maneira:

Aquiles nunca pode alcançar a tartaruga; porque na altura em que atinge o ponto donde a tartaruga partiu, ela ter-se-á deslocado para outro ponto; na altura em que alcança esse segundo ponto, ela ter-se-á deslocado de novo; e assim sucessivamente, ad infinitum¹.

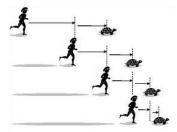


Figura 1.4: Aquiles e a tartaruga

Note que a distância entre o atleta e a tartaruga se tornará tão próxima de zero quanto se desejar. Quanto maior a quantidade de repetições dos espaços percorridos,

¹Ad infinitum é uma expressão em Latim que significa literalmente "até o infinito", "sem limite ou sem fim", para indicar um processo ou operação que continua indefinidamente.

conforme descrito acima, mais próximo o atleta estará da tartaruga. Assim, mesmo que o atleta esteja tão próximo da tartaruga quanto se queira, aquele nunca poderia alcançar esta.

Depois, vieram Eudoxo de Cnido (século IV a.C.) e Arquimedes de Siracusa (287 - 212 a.C.). Ambos utilizaram o método de exaustão para alcançar vários resultados importantes envolvendo áreas e volumes de uma região. O método da exaustão consistia nas seguintes etapas:

- 1) Inscrever uma sequência infinita de figuras de área ou uma sequência infinita de volumes. Esse, no caso dos sólidos;
- 2) Soma as áreas ou os volumes dessas figura;
- 3) A soma obtida se aproximaria da área ou volume da região.

Dentre os resultados obtidos por Arquimedes, tinha um que a área sob um arco parabólico é sempre dois terços da base vezes a altura. Os trabalhos dele não foram tão rigorosos como os dos matemáticos, Newton e Leibniz, que apareceram depois e desenvolveram sequências e séries.

Fibonacci (1170 - 1240) deu continuidade aos estudos das sequências numéricas que estavam presentes em suas pesquisas. Ele descobriu uma sequência de inteiros positivos que cada número é igual a soma dos dois termos antecessores, que é (1,1,2,3,5,8,13,···). Essa sequência foi introduzida em termos de modelagem de uma população reprodutiva de coelhos. Além disso, tem muitas propriedades interessantes e continua sendo aplicada em muitas áreas da matemática moderna e da ciência.

Oresme (1325 - 1382) estudou taxas de variação, como velocidade e aceleração, por meio de aproximações. O principal trabalho dele foi configurationibus, onde apresentou gráficos de velocidade. O argumento atual utilizado para mostrar que a série harmônica é divergente foi inventado por Oresme em sua publicação.

Galileu (1564 - 1642) aplicou a matemática às ciências, em especial à astronomia. Por meio dos estudos de Arquimedes, melhorou a compreensão de hidrostática, desenvolveu os resultados para o movimento sob a gravidade em queda livre e os movimentos dos planetas. Deu conselhos e desafios aos seus sucessores na duas citações abaixo.

1 - Onde os sentidos falham, a razão deve entrar.

2 - Infinitos e indivisíveis transcendem nosso entendimento finito, o primeiro por conta de sua magnitude, o segundo pela sua pequenez; imagine o que eles são quando combinados.

À medida que o cálculo foi se desenvolvendo, a compreensão e o entendimento de séries infinitas foram aumentando.

Para Pascal (1623 - 1662), o infinito era alguma coisa para admirar, mas impossível de entender. Achou melhor a abordagem geométrica de St. Vincent (1584 - 1667) para séries e sua convergência no lugar da nova abordagem analítica de Fermat (1601 - 1665) e Descartes (1596 - 1650). Mesmo assim, juntamente com Fermat e Descartes, usou cálculos com séries nas contribuições aos fundamentos do cálculo diferencial e integral.

No século XVII, muitos matemáticos desenvolveram métodos algébricos para encontra retas tangentes a determinadas curvas. Ambos, Isaac Newton (1641 - 1727) e Gottfried Wilhelm Leibniz (1646 - 1716) desenvolveram representações de séries de funções. Usando métodos algébricos e geométricos, Newton construiu as representações para as séries trigonométricas sen(x) e cos(x) e para a função exponencial.

De acordo com Hefez, Isaac Newton, em Principia Mathematica, foi o primeiro a reconhecer, em certo sentido, a necessidade do limite. No início do Livro I do Princípia, ele tenta dar uma formulação precisa para o conceito de limite.

Carl Friedrich Gauss (1777 - 1855), um dos maiores gênios da matemática, colaborou de vez para a introdução dos cálculos sobre progressões. Conforme [13], aos dez anos de idade, o professor dele pediu, durante a aula, que todos os alunos calcula-se a soma dos números de 1 a 100. Poucos minutos depois, Gauss mostrou o resultado correto. Algo que não tinha acontecido ainda antes dele. Ele observou que na soma, $1+2+3+\cdots+98+99+100$, o primeiro número que é 1 somado ao último 100 é 101, o segundo número que é 2 somado ao penúltimo 99 é 101, e que procedendo dessa forma, sempre a soma obtida seria 101. Em seguida, ele multiplicou 101 pelo números de termos dividido pela metade, ou seja, 101.50=5050. Ele foi o responsável pela fórmula da soma dos termos de uma progressão aritmética. Em 1812, ele deu o primeiro tratamento rigoroso para a noção de convergência de sequências e séries, quando realizou o estudo da série hipergeométrica, mesmo sem utilizar a terminologia de limite.

Figura 1.5: Carl Friedrich Gauss

Um dos grandes matemáticos franceses da primeira metade do século XIX foi Augustin Louis Cauchy (1789 - 1857). Formulou as noções modernas de limite, continuidade e convergência de séries, implicando em resultados que marcaram uma nova era para a Análise Matemática.

Figura 1.6: Augustin Louis Cauchy

Por obra de Abel, Weierstrass, Riemann e outros, no século XIX, desenvolveram a teoria das funções analíticas, que faz uso das séries polinomiais convergentes.

A aplicação das progressões se encontra relacionada também à matemática financeira. Os juros simples podem ser relacionadas às progressões aritméticas e os juros compostos estão ligados às progressões geométricas.

A seguir daremos um embasamento teórico dos conceitos de sequências e séries numéricas.

Capítulo 2

Sequências Numéricas

Vamos introduzir nesse capítulo o conceito de sequência numérica, particularmente, os conceitos de sequências crescentes e decrescentes, limitadas e não limitadas.

2.1 Sequências convergentes e divergentes

Vamos definir inicialmente sequências.

Definição 1 *Uma sequência de números reais é uma função a* : $\mathbb{N} \longrightarrow \mathbb{R}$, que associa a cada número $n \in \mathbb{N}$ um único $a_n \in \mathbb{R}$, denominado o n-ésimo termo da sequência.

Escrevemos $(a_1, a_2, \dots, a_n, \dots)$ ou $(a_n)_{n \in \mathbb{N}}$, ou (a_n) , para indicarmos a sequência cujo n-ésimo termo é a_n .

Não se confunde a sequência (a_n) com o conjunto $a(\mathbb{N}) = \{a_n : n \in \mathbb{N}\}$. Observemos que o conjunto $a(\mathbb{N})$ dos termos da sequência (-1, 1, -1, 1, -1, ...) é $a(\mathbb{N}) = \{-1, 1\}$.

Exemplo 1 Notemos que
$$(\frac{1}{n}) = (1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots)$$
 e $(n) = (1, 2, 3, \dots, n, \dots)$

Definição 2 Sejam (a_n) uma sequência de números reais e ℓ um número real. Dizemos que (a_n) converge para ℓ , ou é convergente, se para qualquer intervalo aberto I contendo ℓ é possível encontrar um número $n_0 \in \mathbb{N}$ tal que $a_n \in I$, para todo $n > n_0$. Escrevemos $\lim_{n \to \infty} a_n = \ell$.

Dizermos que $\lim_{n\to\infty} a_n = \ell$ significa que: Para todo número $r \in \mathbb{R}$, r > 0, existe um número $n_0 \in \mathbb{N}$ tal que para todo $n > n_0$ temos que $a_n \in (\ell - r, \ell + r)$.

Observemos que a condição $a_n \in (\ell - r, \ell + r)$ para todo $n > n_0$, equivale à condição $|a_n - \ell| < r$ para todo $n > n_0$.

$$\frac{\ell_- r \quad a_n \quad \ell}{\ell_- r}$$

Figura 2.1: Intervalo aberto de centro ℓ e raio r

Exemplo 2 A sequência $(\frac{1}{n}) = (1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots)$ converge para 0. Observemos que dado r > 0, é possível encontrar $n_0 \in \mathbb{N}$ tal que $\frac{1}{n_0} < r$ para todo $n > n_0$. Daí, temos para todo $n > n_0$

$$\frac{1}{n} < \frac{1}{n_0} < r.$$

Segue que

$$-r < \frac{1}{n} - 0 < r$$

qualquer que seja $n > n_0$. Logo,

$$\frac{1}{n} \in (-r, r), \forall n > n_0.$$

Portanto, $\lim_{n\to\infty}\frac{1}{n}=0$.

Definição 3 Dizemos que a sequência (a_n) diverge, ou é divergente, se a sequência (a_n) não converge.

Exemplo 3 A sequência $(n) = (1, 2, 3, \dots, n, \dots)$ é divergente.

2.2 Sequências Crescentes e Decrescentes

Uma sequência numérica é uma coleção infinita de números (a_1, a_2, a_3, \cdots) .

Exemplo 4 As sequências $(3,5,7,9,\cdots)$ e $(9,18,27,36,\cdots)$ são coleções infinitas de números.

Usaremos a notação (a_1, a_2, \dots, a_n) para indicar uma coleção finita de números. Uma coleção finita (a_1, a_2, \dots, a_n) ou uma sequência (a_1, a_2, \dots) , é denominada crescente quando cada termo, com exceção do primeiro, é maior do que o termo anterior.

Exemplo 5 As sequências $(3, 6, 9, 12, \dots)$ e $(2, 4, 6, 8, 10, \dots)$ são crescentes.

Uma coleção finita (a_1, a_2, \dots, a_n) ou uma sequência (a_1, a_2, \dots) , é denominada decrescente se cada termo, excluindo o primeiro, é menor do que o termo antecedente.

Exemplo 6 A coleção $(1, \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \cdots)$ é decrescente. Observemos que

$$a_1 = 1 > a_2 = \frac{1}{3} > a_3 = \frac{1}{9} > a_4 = \frac{1}{27} > \cdots$$

Questão 1 Classifique cada uma das seguintes coleções como crescente ou decrescente e finita ou infinita.

- a) $(2, 4, 8, 16, \cdots)$
- b) $(1, \frac{1}{5}, \frac{1}{25}, \frac{1}{125}, \cdots)$
- c) (5, 10, 15, 20, 25)
- d) (81, 72, 63, 54, \cdots)

2.3 Sequências Limitadas e Não limitadas

Uma coleção finita ou sequência é dita limitada superiormente se existir $c \in \mathbb{R}$ tal que todo termo da coleção é menor do que ou igual a c.

Exemplo 7 Notemos que a sequência crescente $(-1, -\frac{1}{2}, -\frac{1}{4}, -\frac{1}{8}, \cdots)$ é limitada superiormente. Isto porque existe $c = 0 \in \mathbb{R}$ tal que todos os termos dessa sequência são menores do que 0.

Uma coleção finita ou sequência é dita limitada inferiormente quando existir $b \in \mathbb{R}$ tal que todo termo da coleção é maior do que ou igual a b.

Exemplo 8 Observemos que a sequência crescente $(3,4,5,6,7,\cdots)$ é limitada inferiormente. Isto é verdade, pois existe $b=2 \in \mathbb{R}$ tal que todos os termos dessa sequência são maiores do que 2.

Uma coleção finita ou sequência é dita limitada se for limitada inferiormente e limitada superiormente.

Exemplo 9 A coleção finita (5, 10, 15, 20, 25) é limitada inferiormente por 4 e limitada superiormente por 26. Portanto, limitada.

Questão 2 Exiba um número real tal que cada coleção seja limitada superiormente ou limitada inferiormente.

- a) (32, 16, 8, 4, 2, 1)
- b) $(\frac{2}{8}, \frac{2}{3}, 2, 6, 18)$
- $c) (0,3;0,03;0,003;\cdots)$
- $d) (2,5,8,11,14,\cdots)$

Capítulo 3

Séries numéricas

3.1 O Uso do Símbolo do Somatório

Observemos que em determinadas situações o símbolo do somatório \sum pode representar a soma dos termos de uma coleção finita de termos ou a soma dos termos de uma sequência.

Exemplo 10 A soma dos termos da coleção finita $(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8})$ pode ser escrita da forma

$$\sum_{n=0}^{3} \left(\frac{1}{2}\right)^n$$

e a soma dos termos da sequência $(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots)$ pode ser escrita como

$$\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n.$$

Questão 3 Desenvolva os seguintes somatórios.

$$a) \sum_{n=1}^{3} \left(\frac{1}{2}\right)^n$$

b)
$$\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n$$

c)
$$\sum_{n=1}^{\infty} (-1)^n$$

$$d) \sum_{n=3}^{5} \left(\frac{1}{4}\right)^n$$

3.2 Séries convergentes e divergentes

Uma série numérica é a soma dos termos de uma sequência (a_n) de números reais. Notação:

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_n + \dots$$

A partir da sequência (a_n) associamos uma nova sequência, conforme a tabela a seguir.

Tabela 3.1: (S_n) é a sequência das somas parciais ou reduzidas da série

S_1	a_1
S_2	$a_1 + a_2$
S_3	$a_1 + a_2 + a_3$
	•••
S_n	$a_1 + a_2 + \cdots + a_n$
	•••

A sequência (S_n) é chamada sequência das somas parciais, ou reduzidas, da série. Além disso, a parcela a_n é o n-ésimo termo ou termo geral da série.

Definição 4 Se existir o limite

$$S=\lim_{n\to\infty}S_n,$$

diremos que a série $\sum_{n=1}^{\infty} a_n$ é convergente e

$$S = \sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_n + \dots$$

será chamado a soma da série. Neste caso a série $\sum_{n=1}^{\infty} a_n$ é dita convergente. Por outro lado, se a sequência (S_n) não convergir, diremos que a série $\sum_{n=1}^{\infty} a_n$ diverge, ou é divergente.

Exemplo 11 A série $\sum_{n=1}^{\infty} a^{n-1}$, onde |a| < 1, é convergente e sua soma é

$$S = \frac{1}{1 - a}.$$

Com efeito, seja (S_n) a sequência das somas parciais da série $\sum_{n=1}^{\infty} a^{n-1}$. Então,

(I)
$$S_n = 1 + a + a^2 + \dots + a^{n-1}$$

(II)
$$S_n.a = a + a^2 + \dots + a^{n-1} + a^n$$

Subtraindo (I) de (II), obtemos:

$$a^{n} - 1 = a.S_{n} - S_{n} = (a - 1).S_{n}.$$

Daí,

$$S_n = \frac{1 - a^n}{1 - a}.$$

Assim,

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} \left(\frac{1-a^n}{1-a}\right).$$

Segue que

$$\lim_{n \to \infty} \left(\frac{1}{1-a} - \frac{a^n}{1-a} \right) = \frac{1}{1-a} - \lim_{n \to \infty} \frac{a^n}{1-a} = \frac{1}{1-a},$$

já que, $\lim_{n\to\infty} \frac{a^n}{1-a} = 0$ quando |a| < 1.

Portanto, $\lim_{n\to\infty} S_n = \frac{1}{1-a}$. Logo, a série $\sum_{n=1}^{\infty} a^{n-1}$, onde |a|<1 converge e sua soma é $S=\frac{1}{1-a}$.

Afirmação 1: Se |a| < 1, então $\lim_{n \to \infty} \frac{a^n}{1 - a} = 0$

Antes de provarmos essa afirmação, considere o Teorema e a proposição seguintes.

Teorema 1 Sejam (x_n) , (y_n) e (z_n) três sequências tais que $x_n \le y_n \le z_n$, para todo $n \in \mathbb{N}$, com $\lim_{n\to\infty} x_n = \ell = \lim_{n\to\infty} z_n$. Então, $\lim_{n\to\infty} y_n = \ell$.

Demonstração: Como $\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n = \ell$, dado r > 0 existem inteiros positivos n_1 e n_2 tais que para todo $n > n_1$ e $n > n_2$ tem-se, respectivamente,

$$x_n \in (\ell - r, \ell + r)$$

e

$$z_n \in (\ell - r, \ell + r).$$

Tomando $n_0 = max\{n_1, n_2\}$, para todo $n > n_0$, tem-se

$$x_n \in (\ell - r, \ell + r)$$

e

$$z_n \in (\ell - r, \ell + r).$$

Como, por hipótese, $x_n \le y_n \le z_n$, para todo $n \in \mathbb{N}$, obtém-se $y_n \in (\ell - r, \ell + r)$ para todo $n \in \mathbb{N}$. Portanto,

$$\lim_{n\to\infty}y_n=\ell.$$

Proposição 3.1 *Seja a* $\in \mathbb{R}$ *com* |a| < 1. *Então*

$$\lim_{n\to\infty}a^n=0.$$

Demonstração: Como |a| < 1, note que $\frac{1}{|a|} > 1$. Daí,

$$\frac{1}{|a|} = 1 + t, t > 0.$$

Elevando ambos os membros da última igualdade a n, tem-se

$$\frac{1}{|a|^n}=(1+t)^n.$$

Pela desigualdade de Bernoulli,

$$(1+t)^n > 1+tn.$$

Como

$$\frac{1}{|a|^n} = (1+t)^n > 1 + tn > tn.$$

Segue que

$$0 < |a|^n < \frac{1}{tn}.\tag{3.1}$$

Aplicando o limite a todos os membros de 3.1, obtém-se $\lim_{n\to\infty} 0 = \lim_{n\to\infty} \frac{1}{tn} = 0$. Pelo Teorema do confronto, conclui-se que

$$\lim_{n\to\infty}|a|^n=0.$$

Se $\lim_{n\to\infty} |a|^n = 0$, então $\lim_{n\to\infty} a^n = 0$.

Com efeito,

$$-|a|^n < a^n < |a|^n. (3.2)$$

Aplicando o limite a todos os membros de 3.2, pelo Teorema do confronto, tem -se

$$\lim_{n\to\infty}a^n=0.$$

Portanto, se $a \in \mathbb{R}$ com |a| < 1, então $\lim_{n \to \infty} a^n = 0$.

Notemos da afirmação 1 acima que

$$\lim_{n\to\infty}\frac{a^n}{1-a}=\frac{1}{1-a}\lim_{n\to\infty}a^n.$$

Como $\lim_{n\to\infty} a^n = 0$, segue que $\lim_{n\to\infty} \frac{a^n}{1-a} = 0$.

Logo, é verdade que se |a| < 1, então $\lim_{n \to \infty} \frac{a^n}{1 - a} = 0$.

O exemplo anterior mostra que a série apresentada na introdução tem por soma igual a 2.

Exemplo 12 A série $\sum_{n=1}^{\infty} n$ é divergente, pois $\lim_{n\to\infty} S_n = \infty$.

Capítulo 4

Sequências e Séries Geométricas

4.1 Definição

Uma coleção finita ou sequência de números reais é dita geométrica se o quociente entre cada termo não nulo, a partir do segundo, e seu antecessor é uma constante. Essa constante é chamada razão da sequência geométrica e é indicada por q.

Exemplo 13 A sequência (2, 4, 8, 16, 32, ···) é geométrica cuja razão é 2, pois

$$\frac{4}{2} = \frac{8}{4} = \frac{16}{8} = \dots = 2 = q.$$

Questão 4 Obtenha a razão de cada uma das coleções geométricas abaixo.

- a) $(27, 9, 3, 1, \cdots)$
- b) $(0,4;0,04;0,004;\cdots)$
- c) (2, 10, 50, 250)
- *d*) (200, 20, 2)

Observação: Uma coleção finita geométrica ou sequência de números reais geométrica é

- crescente quando os termos são positivos e q > 1 ou se os termos são negativos e 0 < q < 1;
- decrescente se os termos são positivos e 0 < q < 1 ou quando os termos são negativos e q > 1;

- constante caso q = 1;
- oscilante ou alternante quando q < 0.

4.2 Sequências geométricas de razão entre 0 e 1

O que acontece quando somamos termos de sequências geométricas com razão entre 0 e 1?

Figura 4.1: Segmento de reta AB cuja medida é 2 metros

Para entendermos melhor, vamos considerar um segmento de reta AB cuja medida é de 2 m, conforme figura 4.1. Se dividirmos esse segmento pelo ponto médio, denotado por M, teremos os segmentos AM = MB= $\frac{1}{2}$ AB = 1 m. Ou seja,

Figura 4.2: Segmento de reta AB dividido pelo seu ponto médio

Consideremos O o ponto médio do segmento MB. Observemos que MO = OB = $= \frac{1}{4}$ AB = $\frac{1}{2}$ m . Isto é,

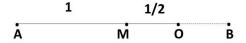


Figura 4.3: Segmento de reta MO corresponde a 1/4 do segmento AB

Se S é o ponto médio do segmento OB, então OS = SB = $\frac{1}{8}$ AB = $\frac{1}{4}$ m, de acordo com a figura 4.4.

Procedendo desta forma, observamos que as medidas dos infinitos segmentos AM, MO, OS, \cdots formam, nessa ordem, uma sequência geométrica $(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots)$ cuja razão



Figura 4.4: Segmento de reta OS corresponde a 1/8 do segmento AB

$$\acute{e} q = \frac{1}{2}.$$

Notemos que, a soma dos termos dessa sequência, pode ser escrita da forma

$$\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n.$$

E mais, à medida que somamos mais termos dessa sequência, essa soma se aproxima mais e mais da medida de 2m, o que pode ser observado na tabela a seguir.

	I	
n	Somatório	Soma
0	$\sum_{n=0}^{0} \left(\frac{1}{2}\right)^n$	1
1	$\sum_{n=0}^{1} \left(\frac{1}{2}\right)^n$	$1 + \frac{1}{2} = 1 + 0.5 = 1.5$
2	$\sum_{n=0}^{2} \left(\frac{1}{2}\right)^n$	$1 + \frac{1}{2} + \frac{1}{4} = 1,5 + 0,25 = 1,75$
3	$\sum_{n=0}^{3} \left(\frac{1}{2}\right)^n$	$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = 1,75 + 0,125 = 1,875$
4	$\sum_{n=0}^{4} \left(\frac{1}{2}\right)^n$	$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} = 1,875 + 0,0625 = 1,9375$
5	$\sum_{n=0}^{5} \left(\frac{1}{2}\right)^n$	$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} = 1,9375 + 0,03125 = 1,96875$
6	$\sum_{n=0}^{6} \left(\frac{1}{2}\right)^n$	$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} = 1,96875 + 0,015625 = 1,984375$
• • •	•••	

Tabela 4.1: Tabela que indica a soma dos termos da coleção $(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots)$

Como a soma dos termos da sequência $(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \cdots)$ se aproxima mais e mais de 2m quando $n \in \mathbb{N}$ aumenta, pode-se deduzir que

$$\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \dots = 2.$$

Observação: Sempre que tivermos uma sequência geométrica com razão 0 < q < 1, a soma infinita dos termos desta sequência será um número real.

Outra forma de obter a soma da sequência geométrica $(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \cdots)$ é por meio da seguinte fórmula:

$$\frac{a_1}{1-q'}$$

onde a_1 e q indicam respectivamente o primeiro termo e a razão da sequência. Mas de onde aparece essa fórmula? Para responder a essa pergunta, obteremos primeiramente a fórmula da soma dos termos de uma progressão geométrica.

Questão 5 Considere a sequência (C_1, C_2, C_3, \cdots) de infinitas circunferências. Se o diâmetro da circunferência C_1 é 80cm e, a partir da segunda, o diâmetro de cada circunferência é $\frac{1}{4}$ do diâmetro anterior, calcule a soma dos diâmetros das infinitas circunferências.

$$C_1$$
 C_2
 C_3 ...

Questão 6 Qual a fração geratriz da dízima periódica 0,33333 · · · ?

A sequir daremos uma explicação mais detalhada da soma de uma série geométrica construída no capítulo 3.

4.3 Fórmula do termo geral de uma progressão geométrica

Vamos obter a fórmula do termo geral de uma progressão geométrica. Para isso, consideremos a sequência geométrica de termos não nulos $(a_1, a_2, a_3, a_4, a_5, \dots, a_n, \dots)$ de razão q, onde a_n denota o n-ésimo termo dessa sequência. Daí, podemos escrever:

$$a_{2} = a_{1}q$$

$$a_{3} = a_{2}q$$

$$a_{4} = a_{3}q$$

$$\dots$$

$$a_{n} = a_{n-1}q$$

$$(4.1)$$

uma vez que cada termo é obtido pelo produto do seu antecedente pela razão. Multiplicando membro a membro as igualdades de 4.1, obteremos:

$$a_2a_3\cdots a_{n-1}a_n = a_1a_2a_3\cdots a_{n-1}q^{n-1}$$

Simplificando ambos os membros, pela lei do cancelamento, resulta que

$$a_n = a_1 q^{n-1}.$$

Essa última igualdade é a fórmula do termo geral de uma sequência geométrica $(a_1, a_2, a_3, a_4, a_5, \dots, a_n, \dots)$, onde a_n denota o n-ésimo termo, a_1 o primeiro termo e q a razão dessa sequência.

4.4 Soma dos n primeiros termos de uma sequência geométrica

Consideremos a sequência geométrica de termos não nulos $(a_1, a_2, a_3, a_4, a_5, \cdots, a_n, \cdots)$ de razão q, onde a_n denota o n-ésimo termo dessa sequência.

Notemos que qualquer termo da sequência acima pode ser escrita como um produto do primeiro termo a_1 por uma potência de q. Ou seja,

$$a_1 = a_1 q^0$$

$$a_2 = a_1 q^1$$

$$a_3 = a_1 q^2$$

$$\dots$$

$$a_n = a_1 q^{n-1}$$

Indicando por S_n a soma dos n primeiros termos da sequência geométrica de razão q, temos

$$S_n = a_1 + a_2 + a_3 + a_4 + \cdots + a_n.$$

Ou seja,

$$S_n = a_1 + a_1 q^1 + a_1 q^2 + a_1 q^3 + \dots + a_1 q^{n-1}.$$

Há duas situações: ou q = 1 ou $q \neq 1$.

Se q = 1, de $S_n = a_1 + a_1q^1 + a_1q^2 + a_1q^3 + \cdots + a_1q^{n-1}$, temos que

$$S_n = a_1 + a_1 \cdot 1^1 + a_1 \cdot 1^2 + a_1 \cdot 1^3 + \dots + a_1 \cdot 1^{n-1}$$
.

Daí, $S_n = a_1 + a_1 + a_1 + a_1 + \cdots + a_1$ com n parcelas iguais a a_1 . Segue que $S_n = na_1$. Por outro lado, se $q \ne 1$, multiplicando ambos os membros de

$$S_n = a_1 + a_1 q^1 + a_1 q^2 + a_1 q^3 + \dots + a_1 q^{n-1}$$
(4.2)

por q, obtemos

$$S_n q = a_1 q + a_1 q^2 + a_1 q^3 + a_1 q^4 + \dots + a_1 q^n.$$
(4.3)

Subtraindo membro a membro as igualdades 4.2 e 4.3 temos:

$$S_n - S_n q = (a_1 + a_1 q^1 + a_1 q^2 + a_1 q^3 + \dots + a_1 q^{n-1}) - (a_1 q^1 + a_1 q^2 + a_1 q^3 + a_1 q^4 + \dots + a_1 q^n)$$

$$\Rightarrow S_n - S_n q = a_1 + a_1 q^1 + a_1 q^2 + a_1 q^3 + \dots + a_1 q^{n-1} - a_1 q^1 - a_1 q^2 - a_1 q^3 - a_1 q^4 - \dots - a_1 q^n$$

Colocando S_n em evidência no primeiro membro e cancelando os termos que são opostos no segundo membro, obtemos:

$$S_n(1-q) = a_1 - a_1 q^n$$

o que implica

$$S_n(1-q) = a_1(1-q^n)$$

Como $q \neq 1$, podemos multiplicar ambos os membros da última igualdade por $\frac{1}{1-q}$. O que resulta

$$S_n = \frac{a_1(1-q^n)}{1-q}.$$

Portanto, acabamos de demonstrar o seguinte teorema.

Teorema 2 Seja S_n a soma dos n primeiros termos da sequência geométrica $(a_1, a_2, a_3, a_4, a_5, \cdots, a_n, \cdots)$ de razão q. Logo,

- (I) Se q = 1, então $S_n = na_1$;
- (II) se $q \neq 1$, então

$$S_n = \frac{a_1(1-q^n)}{1-q}.$$

4.5 Soma dos infinitos termos de uma sequência geométrica

Teorema 3 *O limite da soma dos infinitos termos de uma sequência geométrica* $(a_1, a_2, a_3, a_4, \cdots)$ *de razão q, com* 0 < q < 1, *é dado por:*

$$S_{\infty} = \frac{a_1}{1 - q}.$$

Demonstração: Notemos que a soma S_n dos n primeiros termos de uma sequência geométrica de razão q, quando $q \neq 1$, é dada por

$$S_n = \frac{a_1(1-q^n)}{1-q}.$$

Daí,

$$S_n = \frac{a_1 - a_1 q^n}{1 - q}.$$

Segue que

$$S_n = \frac{a_1}{1 - q} - \frac{a_1 q^n}{1 - q}. (4.4)$$

Vamos analisar o quociente $\frac{a_1q^n}{1-q}$. Notemos que $\frac{a_1q^n}{1-q}=q^n.\frac{a_1}{1-q}$. Pela Proposição 3.1, $\lim_{n\to\infty}q^n=0$, quando 0< q<1. Consequentemente, o quociente $\frac{a_1q^n}{1-q}$ tende também a zero. Logo, a expressão de 4.4 se aproxima cada vez mais de

$$\frac{a_1}{1-q}$$

quando n natural cresce infinitamente. Isto significa que a soma S_{∞} dos infinitos termos de uma sequência geométrica infinita de razão 0 < q < 1, pode ser calculada pela seguinte fórmula.

$$S_{\infty} = \frac{a_1}{1 - q}$$

Descrição das aulas

As aulas ocorreram na Escola Professora Teresa Neuma Pedrosa, localizada na Rua Projetada s/n, bairro Maria Auxiliadora, Caruaru - PE. Num total de 14 aulas, foram ministradas em uma turma do nono ano, no período de 24 de novembro a 08 de dezembro de 2014. A turma tinha 30 alunos dos quais 23 participaram da avaliação de verificação da aprendizagem. Os recursos didáticos utilizados foram quadro branco, lápis para quadro branco, apagador e calculadora.

5.1 Primeira e segunda aulas

No dia 24 de novembro, a aula foi iniciada com uma breve introdução do que seria feito posteriormente.

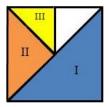


Figura 5.1: A área III corresponde a $\frac{1}{8}$ da área total

Considerando um quadrado de área $2m^2$, conforme a figura acima, obtemos uma sequência infinita de parcelas de áreas que à medida que somamos, essa soma se aproximava cada vez mais da área total. Ou seja,

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} \dots = 2.$$

Observamos que os alunos tinham dificuldades de compreender, e por isso, surgiam muitas perguntas e dúvidas, que ao longo das aulas foram diminuindo de forma sig-

nificativa.

Na segunda aula, foram abordadas os conceitos de coleção finita e infinita, crescente e decrescente. Nessa aula, alguns exemplos foram citados.

5.2 Terceira aula

A terceira aula ocorreu no dia 26 de novembro. Foi um momento em que revisamos o conceito de coleções finitas e infinitas, crescentes e decrescentes por meio da seguinte questão:

Classifique cada uma das seguintes coleções como crescente ou decrescente e finita ou infinita.

a)
$$(2,4,8,16,\cdots)$$

b)
$$(1, \frac{1}{5}, \frac{1}{25}, \frac{1}{125}, \cdots)$$

c)
$$(5, 10, 15, 20, 25, \cdots)$$

d)
$$(81,72,63,54,\cdots)$$

A maioria dos alunos responderam sem muitas dificuldades, entendendo que as letras a) e c) são coleções crescentes e as letra b) e d), coleções decrescentes.

5.3 Quarta e quinta aulas

Essas aulas ocorreram no dia 27 de novembro. Definimos coleções limitadas e não limitadas. Exemplificamos e respondemos a seguinte questão.

Exiba um número real tal que cada coleção seja limitada superiormente ou limitada inferiormente.

b)
$$(\frac{2}{8}, \frac{2}{3}, 2, 6, 18)$$

c)
$$(0,3;0,03;0,003;\cdots)$$

d)
$$(2, 5, 8, 11, 14, \cdots)$$

Notamos que uma boa parte dos alunos compreenderam o conceito de coleções limitadas. A coleção da letra b) foi difícil de resolver para alguns alunos, por motivo de envolver frações. Finalmente, concluímos que todas as coleções são limitadas inferiormente e as coleções a), b) e c) são limitadas superiormente.

5.4 Sexta e sétima aulas

O uso do símbolo do somatório foi trabalhado na sexta aula. Eles observaram que o símbolo Σ poderia ser usado para determinadas coleções. Apresentamos também o símbolo do infinito ∞ .

Eles tiveram bastante dificuldade em responder a questão a seguir.

Desenvolva os seguintes somatórios.

a)
$$\sum_{n=1}^{3} \left(\frac{1}{2}\right)^n$$

b)
$$\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n$$

c)
$$\sum_{n=1}^{\infty} (-1)^n$$

d)
$$\sum_{n=3}^{5} \left(\frac{1}{4}\right)^n$$

Poucos alunos conseguiram desenvolver os somatórios acima. Alguns erraram no desenvolvimento das potências.

Na sétima aula, definimos coleções geométricas. Vimos exemplos de coleções que não eram geométricas e respondemos a questão abaixo.

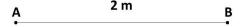
Obtenha a razão de cada uma das coleções geométricas abaixo.

- a) $(27, 9, 3, 1, \cdots)$
- b) $(0,4;0,04;0,004;\cdots)$
- c) (2, 10, 50, 250)
- d) (200, 20, 2)

Muitos responderam corretamente e até simplificaram a fração nos itens que foram necessários. As razões das coleções geométricas acima são respectivamente $\frac{1}{3}$, $\frac{1}{10}$, 5 e $\frac{1}{10}$. Essas aulas aconteceram no dia 01 de dezembro.

5.5 Oitava e nona aulas

No dia 03 de dezembro, trabalhamos uma situação que envolvia uma coleção geométrica cuja razão estava entre 0 e 1. O problema envolvia um segmento de reta AB cuja medida era de 2 m, conforme figura a seguir.



Mostramos que dividindo esse segmento pelo ponto médio, denotado por M, teríamos os segmentos $AM = MB = \frac{1}{2} AB = 1 m$.

Consideramos O o ponto médio de MB. Observamos que MO = OB = $\frac{1}{4}$ AB = $\frac{1}{2}$ m.

Procedendo desta forma, construímos uma coleção geométrica $(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots)$ de razão $q = \frac{1}{2}$.

Na aula seguinte, orientamos eles a construírem uma tabela conforme a seguir, com o auxílio de uma calculadora.

n	Somatório	Soma
0	$\sum_{n=0}^{0} \left(\frac{1}{2}\right)^n$	1
1	$\sum_{n=0}^{1} \left(\frac{1}{2}\right)^n$	$1 + \frac{1}{2} = 1 + 0.5 = 1.5$
2	$\sum_{n=0}^{2} \left(\frac{1}{2}\right)^n$	$1 + \frac{1}{2} + \frac{1}{4} = 1.5 + 0.25 = 1.75$
3	$\sum_{n=0}^{3} \left(\frac{1}{2}\right)^n$	$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = 1,75 + 0,125 = 1,875$
4	$\sum_{n=0}^{4} \left(\frac{1}{2}\right)^n$	$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} = 1,875 + 0,0625 = 1,9375$
5	$\sum_{n=0}^{5} \left(\frac{1}{2}\right)^n$	$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} = 1,9375 + 0,03125 = 1,96875$
6	$\sum_{n=0}^{6} \left(\frac{1}{2}\right)^n$	$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} = 1,96875 + 0,015625 = 1,984375$
•••	•••	

Depois de preenchida, a tabela, observamos que somando mais e mais termos da coleção $(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots)$, essa soma se aproximava de uma medida. E aí, alguns alunos concluíram que essa medida seria de 2m.

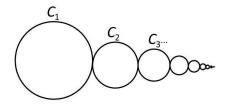
Aproveitamos e representamos a soma obtida na tabela acima pela forma:

$$\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n = 2.$$

5.6 Décima aula

No dia 04 de dezembro, trabalhamos a seguinte questão:

Considere a coleção (C_1, C_2, C_3, \cdots) de infinitas circunferências. Se o diâmetro da circunferência C_1 é 80cm e, a partir da segunda, o diâmetro de cada circunferência é $\frac{1}{2}$ do diâmetro anterior, calcule a soma dos diâmetros das infinitas circunferências.



Observamos primeiramente que a coleção é $(80, 40, 20, 10, 5, \frac{5}{2}, \frac{5}{4}, \frac{5}{8}, \cdots)$. Isso é verdade, pois a partir do segundo termo, o diâmetro de cada circunferência é $\frac{1}{2}$ do diâmetro anterior.

Por um processo de construção, os alunos começaram a somar os termos dessa coleção,

observando que:

	·
a_1	80
$a_1 + a_2$	80 + 40 = 120
$a_1 + a_2 + a_3$	80 + 40 + 20 = 140
$a_1 + a_2 + a_3 + a_4$	80 + 40 + 20 + 10 = 150
$a_1 + a_2 + a_3 + a_4 + a_5$	80 + 40 + 20 + 10 + 5 = 155
$a_1 + a_2 + a_3 + a_4 + a_5 + a_6$	$80 + 40 + 20 + 10 + 5 + \frac{5}{2} = 157,5$
$a_1 + a_2 + a_3 + a_4 + a_5 + a_6$	$80 + 40 + 20 + 10 + 5 + \frac{5}{2} + \frac{5}{4} = 158,75$
$a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7$	$80 + 40 + 20 + 10 + 5 + \frac{5}{2} + \frac{5}{4} + \frac{5}{8} = 159,375$
•••	

Tabela 5.1: Somas dos infinitos termos da coleção $(80,40,20,10,5,\frac{5}{2},\frac{5}{4},\frac{5}{8}...)$

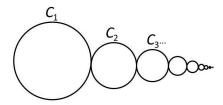
Daí, os alunos observaram que quanto mais termos somados, a soma obtida das medidas dos diâmetros das infinitas circunferências tendia a 160 cm.

5.7 Décima primeira e décima segunda aulas

Apresentamos nessa aula, a fórmula da soma dos infinitos termos de uma coleção geométrica de razão 0 < q < 1, que é

$$S_{\infty} = \frac{a_1}{1 - q}.$$

Por meio dessa fórmula respondemos a questão discutida na aula anterior. Considere a sequência (C_1, C_2, C_3, \cdots) de infinitas circunferências. Se o diâmetro da circunferência C_1 é 80cm e, a partir da segunda, o diâmetro de cada circunferência é $\frac{1}{2}$ do diâmetro anterior, calcule a soma dos diâmetros das infinitas circunferências.



Observamos que o primeiro termo e a razão da sequência $(80,40,20,10,5,\frac{5}{2},\frac{5}{4},\frac{5}{8},\cdots)$

são
$$a_1 = 80$$
 e $q = \frac{1}{2}$.
Logo,

$$S_{\infty} = \frac{80}{1 - \frac{1}{2}} = 160.$$

Portanto, a soma dos diâmetros dos infinitos termos da coleção $(80, 40, 20, 10, 5, \frac{5}{2}, \frac{5}{4}, \frac{5}{8}, \cdots)$ é 160.

Questão 02. Qual a fração geratriz da dízima periódica 0,33333 ··· ?

Observamos que a dízima periódica simples $0,33333\cdots$ poderia ser escrita da forma $0,3+0,03+0,003+\cdots$, o que representa a soma dos termos da coleção $(0,3;0,03;0,003;\cdots)$. Notamos também que essa coleção é geométrica de razão $q=\frac{1}{10}$. Então, como o primeiro termo da coleção é $a_1=0,3$ e a razão $q=\frac{1}{10}$, temos que

$$S_{\infty} = \frac{0.3}{1 - \frac{1}{10}} = \frac{3}{9} = \frac{1}{3}.$$

Aproveitamos esse momento e com o auxílio de uma calculadora, observamos que $\frac{1}{3} = 0,33333\cdots$.

Essas aulas ocorreram no dia 05 de dezembro.

Aplicação da Prova

A avaliação foi realizada no dia 08 de dezembro de 2015 e composta por dez questões, das quais 9 foram de múltipla escolha e 1 aberta. O tempo dado para a resolução dessa foi de 100 minutos, o que corresponde a duas aulas. Participaram da avaliação 23 alunos.

6.1 Avaliação de verificação da aprendizagem

Escola Municipal Professora Teresa Neuma Pedrosa

Caruaru, 08 de dezembro de 2014

Professor: Sérgio Minzé 9º ano U

Avaliação

01 – Dentre as coleções abaixo, qual é crescente?

- a) (2, 1, 0, -1, -2);
- b) $(1, 1, 1, 1, \cdots)$;
- c) (2, -1, 0, -1, 2);
- d) $(2,3,5,7,11,\cdots)$.

02 – Qual das coleções a seguir é infinita e decrescente?

- a) $(1, \frac{1}{3}, \frac{1}{9}, \frac{1}{27});$
- b) $(0,3;0,03;0,003;\cdots);$
- c) $(1, \frac{1}{4}, \frac{1}{16}, \frac{1}{256});$
- d) $(1, 4, 9, 16, 25, \cdots)$.

- 03 Assinale com "X" a alternativa que indica uma coleção não geométrica limitada superiormente e limitada inferiormente.
- a) $(5, 10, 15, 20, 25, \cdots);$
- b) (-5,-4,-3,-2,-1,0);
- c) $(1, \frac{1}{5}, \frac{1}{25}, \frac{1}{125}, \dots);$
- d) $(3, 6, 9, 12, \cdots)$.
- 04 Identifique dentre as coleções abaixo a que não é geométrica.
- a) $(27, 9, 3, 1, \cdots)$
- b) (1, 7, 15, 105)
- c) (2, 10, 50, 250)
- d) (200, 20, 2)
- 05 A soma: $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$ pode ser representada por:
- a) $\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n$;
- b) $\sum_{n=2}^{\infty} \left(\frac{1}{2}\right)^n$;
- c) $\sum_{n=1}^{3} \left(\frac{1}{2}\right)^n$;
- d) $\sum_{n=2}^{3} \left(\frac{1}{2}\right)^n$.
- 06 A fração geratriz da dízima periódica 0,7777 · · · é:
- a) $\frac{7}{5}$
- b) $\frac{9}{7}$
- c) $\frac{7}{9}$
- d) $\frac{77}{99}$

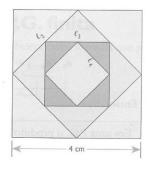
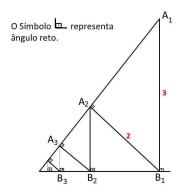


Figura 6.1: Quadrado de lado 4 cm

Seja um quadrado cujo lado mede 4 centímetros. Unindo os pontos médios de seus lados, forma-se um 2° quadrado de área igual a 8 cm^2 ; unindo os pontos médios dos lados desse 2° quadrado, forma-se um 3° quadrado de área igual a 4 cm^2 , e assim sucessivamente. Assim, a sequência formada por essas áreas é $(16, 8, 4, 2, 1, \cdots)$.

De acordo com as informações acima, responda às questões 07, 08 e 09.

- 07 A sequência formada pelas áreas acima é:
- a) crescente e finita;
- b) decrescente e infinita;
- c) decrescente e finita;
- d) crescente e infinita.
- 08 A sequência formada pelas áreas acima é geométrica e sua razão é igual a:
- a) 1
- b) 2
- c) $\frac{1}{2}$
- d) $\frac{1}{4}$
- 09 A soma das áreas desses infinitos quadrados é igual a:
- a) $16 m^2$
- b) 24 m²
- c) $30 m^2$
- d) $32 m^2$
- 10 Na figura, $A_1B_1 = 3$, $B_1A_2 = 2$, $A_2B_2 = \frac{4}{3}$ e os triângulos formados são retângulos. Calcule a soma dos infinitos segmentos: $A_1B_1 + B_1A_2 + A_2B_2 + B_2A_3 + ...$



Resultados da avaliação

Como foram 23 alunos que participaram da avaliação, associamos a cada um deles uma letra maiúscula, ou seja, A, B, C, ··· , V, W. As notas de cada um deles estão na tabela 7.1.

Aluno	Nota								
A	7,0	F	6,0	K	7,0	P	8,0	U	4,0
В	5,0	G	6,0	L	5,0	Q	6,0	V	5,0
С	8,0	Н	6,0	M	9,0	R	8,0	W	5,0
D	2,0	I	5,0	N	4,0	S	9,0		
E	5,0	J	7,0	О	7,0	Т	7,0		

Tabela 7.1: Nota de cada aluno na avaliação.

De acordo com a tabela 7.1, observamos que a média das notas dos 23 alunos foi de 6,13. Essa média se torna muito interessante, já que não é comum alunos do ensino fundamental estudarem noções de sequências e séries geométricas, da forma que foi abordada nesse trabalho.

A tabela 7.2 indica a quantidade de acertos e erros por cada questão e suas respectivas porcentagens. As quantidades de acertos e erros por questão estão descritas respectivamente nas colunas I e II, enquanto os respectivos percentuais de acertos e erros por questão estão indicados nas colunas III e IV.

Pela tabela 7.2 e o gráfico de colunas apresentado a seguir, notamos que a maioria dos alunos acertaram as questões 01, 02, 03, 04, 06 e 07, enquanto mais da metade deles erraram as questões 05, 08, 09 e 10. Em particular, a 10^a questão teve o maior percentual de erro, onde apenas 03 alunos dos 23 acertaram.

Tabela 7.2: Quantidade de acertos e erros por questão e suas respectivas porcentagens.

Questão	I	II	III	IV
1	23	0	100	0
2	22	01	96	4
3	15	08	65	35
4	19	04	83	17
5	05	18	22	78
6	13	10	57	43
7	22	01	96	4
8	09	14	39	61
9	11	12	48	52
10	03	20	13	87

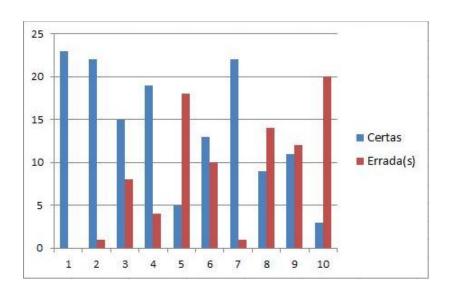


Figura 7.1: Quantidade de alunos que acertaram e erraram cada questão

Análise dos resultados

Vamos analisar as questões da avaliação de verificação da aprendizagem. Observemos que nas quatro primeiras questões, a maioria dos alunos acertaram. Notamos durante as aulas que eles realmente entenderam e aplicaram corretamente os conceitos de coleções crescentes e decrescentes, finitas e infinitas, limitadas superiormente e inferiormente. Além disso, eles também conseguiram identificar as sequências geométricas.

Na questão 05, alguns alunos desenvolveram os somatórios, mas não observaram que a questão era de múltipla escolha, e consequentemente não assinalaram alguma letra. Observemos a figura 8.1. Outros não souberam resolver potências que tinham como base uma fração. Observamos também que o símbolo do somatório não é trabalhado em sala de aula do 6º ao 9º ano, de acordo com os livros didáticos adotados nesses anos.

05 - A soma:
$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8}$$
 ... pode ser representada por:

(a) $\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n$; $\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3$ c

(b) $\sum_{n=2}^{\infty} \left(\frac{1}{2}\right)^n$; $\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^3$

(c) $\sum_{n=1}^{3} \left(\frac{1}{2}\right)^n$; $\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3$

(d) $\sum_{n=2}^{3} \left(\frac{1}{2}\right)^n$. $\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3$

Figura 8.1: Questão 05 desenvolvida de forma correta pelo aluno S

Como podemos observar, 13 dos 23 alunos acertaram a questão 06. A maioria desses assinalou a alternativa correta utilizando a calculadora, mas teve também aqueles que identificaram que o número $0,7777\cdots$ poderia ser escrito como uma soma dos termos de uma sequência geométrica $(0,7;0,07;0,007;\cdots)$. E por isso, poderiam utilizar a fórmula da soma dos termos de uma sequência geométrica de razão 0 < q < 1.

06 – A fração geratriz da dízima periódica 0,7777... é:
a)
$$\frac{7}{5}$$
 b) $\frac{9}{7}$ $\chi^{\frac{7}{9}}$ d) $\frac{77}{99}$ $(0,7+0,07+0,007)$
 $\frac{0,7}{1-7} = \frac{0,7}{70-7} = \frac{0,7}{63} = \frac{0,7}{63} = \frac{49}{63} = \frac{7}{9}$ 1

Figura 8.2: Questão 05 respondida de forma correta pelo aluno S

Com exceção de um aluno, os demais identificaram na questão 7 que a coleção $(16,8,4,2,1,\cdots)$ é decrescente e infinita.

Já dos 14 que erraram a questão 8, metade assinalou a letra b). Isto não é verdade, pois a razão é $\frac{1}{2}$ conforme figura 8.3 e não 2 como nas figuras 8.4 e 8.5.

08 – A sequência formada pelas áreas acima é geométrica e sua razão é igual a:

a) 1

b) 2

$$\frac{8}{36} = 0.5$$
 $\frac{4}{8} = 0.5$
 $\frac{1}{2} = 0.5$
 $\frac{1}{2} = 0.5$
 $\frac{1}{4} = 0.5$

Figura 8.3: Questão 08 respondida corretamente pelo aluno C

08 - A sequência formada pelas áreas acima é geométrica e sua razão é igual a:

a) 1
$$\chi_{b}$$
 2 $\frac{3}{4}$ $\frac{1}{4}$ $\frac{3}{4}$ $\frac{3}{4}$

Figura 8.4: Questão 08 feita de forma errada pelo aluno C

Os alunos que responderam corretamente as questões 09 e 10, preferiram aplicar a fórmula da soma dos infinitos termos de uma sequência geométrica. 11 alunos acertaram a questão 09 enquanto apenas 3 acertaram a questão 10. Observemos que o aluno que respondeu a questão 09 exibida na figura 8.6 respondeu utilizando a fórmula da soma dos infinitos termos de uma sequência geométrica.

08 - A sequência formada pelas áreas acima é geométrica e sua razão é igual a:

Figura 8.5: Questão 08 respondida de forma errada pelo aluno S

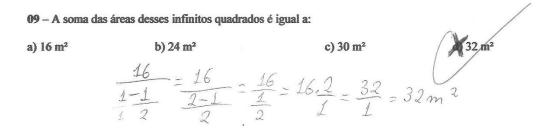


Figura 8.6: Questão 09 respondida corretamente pelo aluno S

A figura e a notação utilizada na questão 10 não foram de fácil interpretação e compreensão. Além disso, de acordo com a tabela 7.2, apenas três alunos acertaram. Dentre eles, o aluno S que respondeu conforme a figura 8.7.

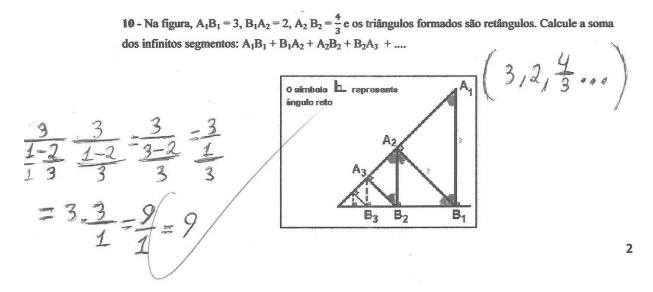


Figura 8.7: Questão 10 corretamente respondida pelo aluno S

Portanto, observamos que é possível trabalhar no nono ano, sequências geométricas de razão entre 0 e 1, por um processo construtivo e pela apresentação da fórmula da soma dos infinitos termos dessas. O que tornará melhor a compreensão e entendimento das sequências geométricas durante o ensino médio.

Referências Bibliográficas

- [1] Aldo B. Maciel e Osmundo A. Lima, Introdução à Análise Real, EDUEP, Campina Grande, 2005, 274 p.
- [2] A. HEFEZ, L. M. Figueiredo e M. O. M. da Silva. MA22 Unidade 01 Sequências Reais e Seus Limites Rio de Janeiro: SBM, 2013.
- [3] A. Hefez, L. M. Figueiredo e M. O. M. da Silva. MA22 Unidade 02 Propriedades dos Limites de Sequências. Rio de Janeiro: SBM, 2013.
- [4] Bianchini, Edwaldo, 1935 Matemática, volume 2: versão beta/ Edwaldo Bianchini, Herval Paccola 2. ed. rev. e ampl. São Paulo: moderna, 1995.
- [5] Dante, Luiz Roberto. Tudo é matemática/ Luiz Roberto Dante. 3ª ed. São Paulo: Ática, 2009.
- [6] Govanni, José Ruy, 1937 A conquista da matemática/ Giovanni, Castrucci, Giovanni Jr. Ed. renov. São Paulo: FTD, 2007. (Coleção a conquista da matemática)
- [7] L.A.Medeiros, S.M.Malta, J.Límaco e H.R.Clark, Lições de Análise Matemática, Instituto de Matemática, UFRJ, Rio de Janeiro, 2005, 291 p.
- [8] Lima, Elon Lages; Carvalho, Paulo Cezar; Wagner, Eduardo; Morgado, Augusto Cesar. A matemática do Ensino Médio. Volume 2. Coleção do Professor de Matemática. SBM. 1998.
- [9] Lima, Elon Lages. Análise real volume 1 / Elon Lages Lima. 8.ed. Rio de Janeiro: IMPA, 2004. 189 p.: il.; 23 cm. (Coleção Matemática Universitária)
- [10] Paiva, Manoel Rodrigues, 1950 Matemática/ Manoel Rodrigues Paiva São Paulo: Moderna, 1995.
- [11] Nóe, Marcos. Progressões. Disponível em www.brasilescola.com/matematica/progressões.htm > acesso em 10 de março de 2015.

- [12] Nota histórica: sequências e séries disponível em www.mat.ufmg.br/calculoII/h1sese.html > acesso em 05 de março de 2015.
- [13] Oliveira, Fabiana Soares. O estudo das sequências através de padrões numéricos. Campina Grande – PB. 2011.
- [14] Silva/ Jonh Cleidson da. Limite e Continuidade: Um enfoque acessível ao Ensino Médio com o auxílio do GeoGebra. Campina Grande PB. 2014.
- [15] Souza, Joamir Roberto de. Vontade de saber matemática, 9º ano/ Joamir Roberto de Souza, Patricia Rosana Moreno Pataro. 2ª ed. São Paulo: FTD, 2012.